Цвет отличается яркостью и насыщенностью. О цветовых пространствах. Цвета нейтральные по температуре

Я по образованию программист, но по работе мне пришлось столкнуться с обработкой изображений. И тут для меня открылся удивительный и неизведанный мир цветовых пространств. Не думаю, что дизайнеры и фотографы узнают для себя что-то новое, но, возможно, кому-нибудь это знание окажется, как минимум полезно, а в лучшем случае интересно.

Основная задача цветовых моделей – сделать возможным задание цветов унифицированным образом. По сути цветовые модели задают определённые системы координат, которые позволяют однозначно определить цвет.

Наиболее популярными на сегодняшний день являются следующие цветовые модели: RGB (используется в основном в мониторах и камерах), CMY(K) (используется в полиграфии), HSI (широко используется в машинном зрении и дизайне). Существует множество других моделей. Например, CIE XYZ (стандартные модели), YCbCr и др. Далее дан краткий обзор этих цветовых моделей.

Цветовой куб RGB

Из закона Грассмана возникает идея аддитивной (т.е. основанной на смешении цветов от непосредственно излучающих объектов) модели цветовоспроизведения. Впервые подобная модель была предложена Джеймсом Максвеллом в 1861 году, но наибольшее распространение она получила значительно позже.

В модели RGB (от англ. red – красный, green – зелёный, blue – голубой) все цвета получаются путём смешения трёх базовых (красного, зелёного и синего) цветов в различных пропорциях. Доля каждого базового цвета в итоговом может восприниматься, как координата в соответствующем трёхмерном пространстве, поэтому данную модель часто называют цветовым кубом. На Рис. 1 представлена модель цветового куба.

Чаще всего модель строится так, чтобы куб был единичным. Точки, соответствующие базовым цветам, расположены в вершинах куба, лежащих на осях: красный – (1;0;0), зелёный – (0;1;0), синий – (0;0;1). При этом вторичные цвета (полученные смешением двух базовых) расположены в других вершинах куба: голубой - (0;1;1), пурпурный - (1;0;1) и жёлтый – (1;1;0). Чёрный и белые цвета расположены в начале координат (0;0;0) и наиболее удалённой от начала координат точке (1;1;1). Рис. показывает только вершины куба.

Цветные изображения в модели RGB строятся из трёх отдельных изображений-каналов. В Табл. показано разложение исходного изображения на цветовые каналы.

В модели RGB для каждой составляющей цвета отводится определённое количество бит, например, если для кодирования каждой составляющей отводить 1 байт, то с помощью этой модели можно закодировать 2^(3*8)≈16 млн. цветов. На практике такое кодирование избыточно, т.к. большинство людей не способно различить такое количество цветов. Часто ограничиваются т.н. режимом «High Color» в котором на кодирование каждой компоненты отводится 5 бит. В некоторых приложениях используют 16-битный режим в котором на кодирование R и B составляющих отводится по 5 бит, а на кодирование G составляющей 6 бит. Этот режим, во-первых, учитывает более высокую чувствительность человека к зелёному цвету, а во-вторых, позволяет более эффективно использовать особенности архитектуры ЭВМ. Количество бит, отводимых на кодирование одного пиксела называется глубиной цвета. В Табл. приведены примеры кодирования одного и того же изображения с разной глубиной цвета.

Субтрактивные модели CMY и CMYK

Субтрактивная модель CMY (от англ. cyan - голубой, magenta - пурпурный, yellow - жёлтый) используется для получения твёрдых копий (печати) изображений, и в некотором роде является антиподом цветового RGB-куба. Если в RGB модели базовые цвета – это цвета источников света, то модель CMY – это модель поглощения цветов.

Например, бумага, покрытая жёлтым красителем не отражает синий свет, т.е. можно сказать, что жёлтый краситель вычитает из отражённого белого света синий. Аналогично голубой краситель вычитает из отражённого света красный, а пурпурный краситель вычитает зелёный. Именно поэтому данную модель принято называть субтрактивной. Алгоритм перевода из модели RGB в модель CMY очень прост:

При этом предполагается, что цвета RGB находятся в интервале . Легко заметить, что для получения чёрного цвета в модели CMY необходимо смешать голубой, пурпурный и жёлтый в равных пропорциях. Этот метод имеет два серьёзных недостатка: во-первых, полученный в результате смешения чёрный цвет будет выглядеть светлее «настоящего» чёрного, во-вторых, это приводит к существенным затратам красителя. Поэтому на практике модель СMY расширяют до модели CMYK, добавляя к трём цветам чёрный (англ. black).

Цветовое пространство тон, насыщенность, интенсивность (HSI)

Рассмотренные ранее цветовые модели RGB и CMY(K) весьма просты в плане аппаратной реализации, но у них есть один существенный недостаток. Человеку очень тяжело оперировать цветами, заданными в этих моделях, т.к. человек, описывая цвета, пользуется не содержанием в описываемом цвете базовых составляющих, а несколько иными категориями.

Чаще всего люди оперируют следующими понятиями: цветовой тон, насыщенность и светлота. При этом, говоря о цветовом тоне, обычно имеют в виду именно цвет. Насыщенность показывает насколько описываемый цвет разбавлен белым (розовый, например, это смесь красного и белого). Понятие светлоты наиболее сложно для описания, и с некоторыми допущениями под светлотой можно понимать интенсивность света.

Если рассмотреть проекцию RGB-куба в направлении диагонали белый-чёрный, то получится шестиугольник:

Все серые цвета (лежащие на диагонали куба) при этом проецируются в центральную точку. Чтобы с помощью этой модели можно было закодировать все цвета, доступные в RGB-модели, необходимо добавить вертикальную ось светлоты (или интенсивности) (I). В итоге получается шестигранный конус:

При этом тон (H) задаётся углом относительно оси красного цвета, насыщенность (S) характеризует чистоту цвета (1 означает совершенно чистый цвет, а 0 соответствует оттенку серого). Важно понимать, что тон и насыщенность не определены при нулевой интенсивности.

Алгоритм перевода из RGB в HSI можно выполнить, воспользовавшись следующими формулами:

Цветовая модель HSI очень популярна среди дизайнеров и художников, т.к. в этой системе обеспечивается непосредственный контроль тона, насыщенности и яркости. Эти же свойства делают эту модель очень популярной в системах машинного зрения. В Табл. показано изменение изображения при увеличении и уменьшении интенсивности, тона (выполняется поворот на ±50°) и насыщенности.

Модель CIE XYZ

С целью унификации была разработана международная стандартная цветовая модель. В результате серии экспериментов международная комиссия по освещению (CIE) определила кривые сложения основных (красного, зелёного и синего) цветов. В этой системе каждому видимому цвету соответствует определённое соотношение основных цветов. При этом, для того, чтобы разработанная модель могла отражать все видимые человеком цвета пришлось ввести отрицательное количество базовых цветов. Чтобы уйти от отрицательных значений CIE, ввела т.н. нереальные или мнимые основные цвета: X (мнимый красный), Y (мнимый зелёный), Z (мнимый синий).

При описании цвета значения X,Y,Z называют стандартными основными возбуждениями, а полученные на их основе координаты – стандартными цветовыми координатами. Стандартные кривые сложения X(λ),Y(λ),Z(λ) (см. Рис.) описывают чувствительность среднестатистического наблюдателя к стандартным возбуждениям:

Помимо стандартных цветовых координат часто используют понятие относительных цветовых координат, которые можно вычислить по следующим формулам:

Легко заметить, что x+y+z=1, а это значит, что для однозначного задания относительных координат достаточно любой пары значений, а соответствующее цветовое пространство может быть представлено в виде двумерного графика:

Множество цветов, задаваемое таким способом, называют треугольником CIE.
Легко заметить, что треугольник CIE описывает только цветовой тон, но никак не описывает яркость. Для описания яркости вводят дополнительную ось, проходящую через точку с координатами (1/3;1/3) (т.н. точку белого). В результате получают цветовое тело CIE (см. Рис.):

Это тело содержит все цвета, видимые среднестатистическим наблюдателем. Основным недостатком этой системы является то, что используя её, мы можем констатировать только совпадение или различие двух цветов, но расстояние между двумя точками этого цветового пространства не соответствует зрительному восприятию различия цветов.

Модель CIELAB

Основной целью при разработке CIELAB было устранение нелинейности системы CIE XYZ с точки зрения человеческого восприятия. Под аббревиатурой LAB обычно понимается цветовое пространство CIE L*a*b*, которое на данный момент является международным стандартом.

В системе CIE L*a*b координата L означает светлоту (в диапазоне от 0 до 100), а координаты a,b – означают позицию между зелёным-пурпурным, и синим-жёлтым цветами. Формулы для перевода координат из CIE XYZ в CIE L*a*b* приведены ниже:


где (Xn,Yn,Zn) – координаты точки белого в пространстве CIE XYZ, а


На Рис. представлены срезы цветового тела CIE L*a*b* для двух значений светлоты:

По сравнению с системой CIE XYZ Евклидово расстояние (√((L1-L2)^2+(a1^*-a2^*)^2+(b1^*-b2^*)^2)) в системе CIE L*a*b* значительно лучше соответствует цветовому различию, воспринимаемому человеком, тем не менее, стандартной формулой цветового различия является чрезвычайно сложная CIEDE2000.

Телевизионные цветоразностные цветовые системы

В цветовых системах YIQ и YUV информация о цвете представляется в виде сигнала яркости (Y) и двух цветоразностных сигналов (IQ и UV соответственно).

Популярность этих цветовых систем обусловлена в первую очередь появлением цветного телевидения. Т.к. компонента Y по сути содержит исходное изображение в градациях серого, сигнал в системе YIQ мог быть принят и корректно отображён как на старых чёрно-белых телевизорах, так и на новых цветных.

Вторым, возможно более важным плюсом, этих пространств является разделение информации о цвете и яркости изображения. Дело в том, что человеческий глаз весьма чувствителен к изменению яркости, и значительно менее чувствителен к изменению цветности. Это позволяет передавать и хранить информацию о цветности с пониженной глубиной. Именно на этой особенности человеческого глаза построены самые популярные на сегодняшний день алгоритмы сжатия изображений (в т.ч. jpeg). Для перевода из пространства RGB в YIQ можно воспользоваться следующими формулами:

Насыщенность цвета - параметр цвета, характеризующий степень чистоты цветового тона. Чем ближе цвет к монохроматическому, тем более он насыщен.

В теории цвета насыщенность - это интенсивность определённого тона, то есть степень визуального отличия хроматического цвета от равного по светлоте ахроматического (серого) цвета. Насыщенный цвет можно назвать сочным, глубоким, менее насыщенный - приглушённым, приближённым к серому. Полностью ненасыщенный цвет будет оттенком серого. Насыщенность (saturation) - одна из трёх координат в цветовых пространствах HSL и HSV. Насыщенность (цветовая насыщенность, chroma) в цветовых пространствах CIE 1976 Lab и Luv является неформализованной величиной, используемой в представлении CIE LCH (lightness (светлота), хрома (chroma, насыщенность), hue (тон)).

В физическом плане насыщенность цвета определяется характером распределения излучения в спектре видимого света. Наиболее насыщенный цвет образуется при существовании пика излучения на одной длине волны, в то время как более равномерное по спектру излучение будет восприниматься как менее насыщенный цвет. В субтрактивной модели формирования цвета, например при смешении красок на бумаге, снижение насыщенности будет наблюдаться при добавлении белых, серых, чёрных красок, а также при добавлении краски дополнительного цвета. ()

Чистота - это степень приближения дан-ного цвета к чистому спектральному, выражаемая в долях единицы.

Наибольшей чистотой обладают цвета спектра. Поэтому чистота всех спектральных цветов прини-мается за единицу, несмотря на их различную насыщенность. Наиболее насыщен синий цвет, наименее - желтый. Особенно насыщенные цвета наблюдаются в спектре, который не содержит примесей белого или черного.

Хроматическую композицию можно построить, варьируя насыщенность одного цвета постоянной светлоты. Это достигается добавлением к выбран-ному цвету нужного количества равного ему по светлоте серого. В результате варианты выбран-ного цвета образуют чистый ряд по насыщенности, в которой насыщенность закономерно изменяется, светлота остается неизменной, а цветовой тон ахроматизируется. ()

Когда к чистому цвету добавляется черный, то меняется его светлота:

Ещё пример, как изменяется насыщенность синего при добавлении к нему серого:

Изменение насыщенности и светлоты оттенков оранжевого и синего:

Как видно на картинке, при добавлении средне-серого и черного к оттенкам теплых цветов при уменьшении насыщенности получаются коричневатые оттенки цвета, холодные цвета становятся сероватыми. На этой картинке изменение чистого цвета идет по двум параметрам: насыщенности и светлоты. Светлота уменьшается с добавлением черного, насыщенность - серого.

Наименее насыщенные и наиболее светлые цвета - пастельные:

Различают несколько качественных характеристик насыщенности цвета:
- живая (vivid) насыщенность;
- сильная (strong) насыщенность;
- глубокая (deep) насыщенность.
Ненасыщенные цвета характеризуются, как тусклые (dull), слабые (weak) или вымытые.

Пример изменения цвета в зависимости от его светлоты (value) и насыщенности (chroma), на примере красного цвета из книги цвeта Манселла:

А так выглядит зеленый цвет с одинаковой светлотой, но с разной насыщенностью (даны процентные соотношения первичных цветов в системе CMYK).

Каждый объект в природе человек может увидеть как предмет того или иного цвета.
Это обусловлено способностью разных предметов поглощать или отражать электромагнитные волны определённой длины. И способностью человеческого глаза воспринимать это отражение посредством особых клеток в сетчатке глаза. Сам предмет при этом цвета не имеет, он обладает только физическими свойствами – поглощать или отражать свет.

Откуда берутся эти самые волны? Любой источник света состоит из этих волн. Таким образом, человек увидеть цвет предмета может только при его освещённости. Причём в зависимости от источника света (солнце днём, солнце на закате или на восходе, луна, лампы накаливания, огонь и т.д.), силы света (более яркий, более тусклый), а также от способности личного восприятия конкретным человеком, цвет предмета может выглядеть по-разному. Хотя сам предмет при этом не меняется, конечно. Итак, цвет – это субъективная характеристика предмета, которая зависит от разных факторов.
Некоторые люди в силу особенностей развития организма вообще не различают цвета. Но большая часть людей способна воспринимать глазом волны определённой длины – от 380 до 780 nm. Поэтому данный участок был назван видимым излучением.

Если солнечный свет пропустить через призму, этот луч разложится на отдельные волны. Это как раз те самые цвета, которые может воспринимать глаз человека: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый. Это 7 электромагнитных волн разной длины, которые вместе составляют белый свет (глазом видим как белый цвет), т.е. его «спектр».
Итак, каждый цвет – это волна определённой длины, которую может увидеть и распознать человек!

Видимый цвет предмета определён тем, каким образом этот предмет взаимодействует со светом, т.е. с составляющими его волнами. Если предмет отражает волны какой-то длины, то эти волны и определяют то, каким мы видим этот цвет. Например, апельсин отражает волны длиной примерно от 590 до 625 nm – это волны оранжевого цвета, а остальные волны поглощает. Именно эти отражающиеся волны и воспринимаются глазом. Поэтому апельсин человек видит оранжевым. А трава выглядит зелёной, потому что благодаря своей молекулярной структуре, поглощает волны красного и синего цвета и отражает волны зелёной части спектра.
Если предмет отражает все волны, а как мы уже знаем, все 7 цветов вместе образуют белый свет (цвет), то такой предмет мы видим белым. А если предмет поглощает все волны, то такой предмет мы видим чёрным.
Промежуточные варианты между белым и чёрным – оттенки серого. Три этих цвета – белый, серый и чёрный – называются ахроматическими, т.е. не содержащими «цветного» цвета, они не входят в спектр. Цвета из спектра – хроматические.


Как я уже говорила, воспринимаемый цвет зависит от источника света. Без света нет волн и нечему отражаться, глаз не видит ничего. Если освещение недостаточно, то глаз видит только очертания предметов – более тёмные или менее тёмные, но все в одной серо-чёрной гамме. За способность глаза видеть в условиях плохого освещения отвечают другие участки сетчатки.

Таким образом, в зависимости от характера света, попадающего на предмет, мы видим разные варианты цвета этого предмета.
Если предмет освещён хорошо, мы видим его чётким, цвет чистый. Если света слишком много, цвет видится разбелённым (вспомните пересвеченные фотографии). Если света мало, цвет выглядит темнее, постепенно стремясь к чёрному.

Каждый цвет можно проанализировать по нескольким параметрам. Это характеристики цвета.

Характеристики цвета.

1) ЦВЕТОВОЙ ТОН . Это та самая длина волны, которая и определяет положение цвета в спектре, его название: красный, синий, жёлтый и т.д.
Необходимо различать понятия «тон» и «подтон».
Тон – это основная краска. Подтон – примесь другого цвета.
За счёт разности подтонов и образуются разные оттенки одного и того же цвета. Например, жёлто-зелёный и сине-зелёный. Основной тон – зелёный, подтон (в меньшем количестве) – жёлтый или синий.
Как раз подтон и определяет такое понятие, как ТЕМПЕРАТУРА цвета. Если к основному тону добавить жёлтый пигмент, то температура цвета будет ощущаться тёплой. Ассоциации с красно-жёлто-оранжевыми цветами – огонь, солнце, тепло, жар. Предметы тёплых оттенков кажутся ближе.
Если к основному тону добавить синий пигмент, то температура цвета будет восприниматься холодной (цвета голубой и синий ассоциируются с льдом, инеем, холодом). Предметы холодных оттенков кажутся дальше.

Здесь важно запомнить и не путать понятия. Есть два значения словосочетаний «тёплые цвета» и «холодные цвета». В одном случае говорят о цветовом тоне, тогда красный, оранжевый и жёлтый – тёплые, а синий, сине-зелёный и фиолетовый – холодные цвета. Зелёный и сиреневый – нейтральные.

Во втором случае речь идёт о подтоне цвета, о его преобладающем оттенке. Именно в этом значении и будет употребляться этот термин в дальнейшем для описания цветов внешности – тёплых и холодных цветотипов. И говоря о температуре цвета в этом значении, мы имеем в виду, что каждый цвет может иметь и тёплый, и холодный оттенок в зависимости от своего подтона ! Кроме оранжевого – он всегда тёплый (из-за особенностей его расположения в спектре). Белый и чёрный вообще не входят в цветовой круг и потому для них не применимо понятие цветового тона, но коль речь зашла о температуре всех цветов, то обозначу сразу, что эти два относятся к холодным цветам.


2) Вторая характеристика каждого цвета – ЯРКОСТЬ .
Она показывает, насколько сильно световое излучение. Если сильное, то цвет максимально яркий. Чем меньше света, тем цвет выглядит темнее, яркость снижается. Любой цвет при максимальном снижении яркости становится чёрным. Представьте предметы яркого цвета в условиях сумерек – цвет кажется тёмным, его яркость не видна. Понижение яркости за счёт добавления чёрного делает цвет более НАСЫЩЕННЫМ . Тёмно-красный – это насыщенный (глубокий) красный, тёмно-синий – насыщенный (глубокий) синий и т.д. В английском языке для более густого, тёмного цвета применяются слова-синонимы: deep (глубокий) и dark (тёмный). В названиях цветотипов вы эти термины тоже встретите.
Яркость света и яркость цвета – разные понятия. Выше говорилось именно о цвете предмета при ярком свете. В графических программах (в том же painte) яркость используется именно в этом значении. На картинке ниже можно увидеть уменьшение параметра «яркость» при затемнении цвета.
Но также существует термин «яркость», в значении «чистота», «сочность» цвета, т.е. максимально интенсивный цвет без примесей чёрного, белого или серого. И именно в этом значении я буду использовать этот термин в дальнейшем. Если написано «параметр «яркость»», то речь идёт об изменении освещения (т.е. светлоте/темноте).

3) Третья характеристика каждого цвета – СВЕТЛОТА .
Это характеристика, противоположная насыщенности (затемнённости, силе) цвета.
Чем больше светлота, тем ближе цвет к белому. Максимальная светлота любого цвета – белый цвет. Параметр «яркость» при этом повышается. Но эта яркость – не цветность (чистота), а увеличение освещённости, ещё раз делаю акцент на разнице этих понятий.
Оттенки с повышающейся степенью светлоты воспринимаются как всё более и более разбелённые, бледные, слабые. Т.е. с малой насыщенностью.

4) Четвёртая характеристика каждого цвета – ХРОМАТИЧНОСТЬ (ИНТЕНСИВНОСТЬ) . Это степень «чистоты» цвета, отсутствие примесей в его тоне, его сочность. При добавлении в основной цвет серого пигмента, цвет становится менее ярким, иначе – приглушённым, мягким. Т.е. его хроматичность (цветность) понижается. При максимально сниженной хроматичности цвета любой цвет становится одним из оттенков серого.
Важно не путать понятия «сочный» и «насыщенный» цвет. Напоминаю, что насыщенный – это тёмный оттенок, а сочный – это яркий, без примесей, тон.
Часто, когда говорят, что цвет яркий, имеют в виду, что он максимально хроматичен, чистый, сочный цвет. Именно в этом значении данный термин и используется в теории цветотипов, о которых пойдёт речь дальше.
Если же говорить о параметре «яркость» в значении освещённости (много света – яркость выше – цвет белее, мало света – яркость ниже – цвет темнее), то мы увидим, что при снижении хроматичности этот параметр не меняется. Т.е. характеристика хроматичность применяется к предметам с одним цветовым тоном в условиях одинаковой освещённости. Но один предмет при этом выглядит более «живым», а другой более «выцветшим» (выцветший – потерявший свой яркий цвет).

Если увеличить параметр «яркость», т.е. добавить белый цвет, то и на этом уровне светлоты можно таким же образом делать цвет более приглушённым, добавляя серый оттенок.

Аналогично и с более насыщенными (более тёмными) оттенками – они тоже бывают как более чистыми, так и более приглушёнными. Главное, что мы видим во всех случаях при уменьшении хроматичности – это всё более выраженный серый подтон. Именно это отличает мягкие цвета от ярких (чистых).

Ещё один важный нюанс – при добавлении в основной тон любого ахроматического цвета (белый, серый, чёрный), меняется температура цвета. Она не меняется на противоположную, т.е. тёплый цвет не станет таким образом холодным или наоборот. Но эти цвета приблизятся по характеристике «температура» к нейтральным оттенкам. Т.е. без ярко выраженной температуры. Именно поэтому представители мягких, тёмных или светлых цветотипов могут носить некоторые цвета из нейтрально-холодных или нейтрально-тёплых вне зависимости от своего основного цветотипа. Но об этом буду рассказывать позже.

Таким образом, по своим основным характеристикам все оттенки делятся на:
1) Тёплые (с золотистым подтоном) / холодные (с синим подтоном)
2) Светлые (ненасыщенные) / тёмные (насыщенные)
3) Яркие (чистые) / мягкие (приглушённые)

И у каждого цвета есть одна ведущая характеристика и две дополнительных, что и обусловливает название некоторых оттенков. Например, светло-розовый – ведущая характеристика – «светлый», дополнительные – может быть как тёплым, так и холодным, как ярким, так и мягким.

Потренируемся определять ведущую характеристику.

Или одну ведущую и одну – дополнительную.

На приведённых выше примерах хорошо видно влияние полутона на ведущую характеристику оттенка:
Тёмные цвета – цвета с добавлением чёрного (насыщенные).
Светлые цвета – цвета с добавлением белого (выбеленные).
Тёплые цвета – цвета с тёплыми (жёлтыми, золотистыми) полутонами.
Холодные цвета – цвета с холодными (синими) полутонами, кажутся льдистыми.
Яркие цвета – чистые, без добавления серого.
Мягкие цвета – приглушённые, с добавлением серого.

Продолжим с теорией цвета.
Сегодня поговорим об оставшихся двух характеристиках цвета:
светлый - насыщенный
яркий - мягкий

Что из себя представляют эти две характеристики, несложно определить, используя любой графический редактор.
Сначала разберемся с хроматическими цветами

Посмотрим на 2 схемы:

Палитра №1

По оси х (горизонтальной, кто забыл математику=)) идет яркость , по у - насыщенность , отдельно вынесли z - собственно, сам цвет , тон
Тут видно, что яркий цвет - это цвет без добавления серого , в то время как мягкий цвет - цвет с добавлением серого

Насыщенный, темный цвет - это цвет с добавлением черного . Таблицу можно было бы продлить вверх,добавляя белый, тогда получился бы светлый цвет - цвет с добавлением белого .

Теперь посмотрим палитру самой простой графической программы - paint

Палитра№2

Примерно то же самое, просто система координат поменялась местами
За пределы квадрата вынесли насыщенность (добавление к цвету черного и белого). Сам спектральный цвет в этом ряду посередине , ближе к низу к нему добавляется черный и цвет становится насыщенным, ближе к верху к нему добавляется белый и цвет становится светлым.
В квадрате же по оси х меняются цвета спектра, а по оси у сверху вниз теряется яркость, к цвету добавляется серый -он становится мягким.

Вот еще одна более простая схема яркости и мягкости, светлоты и насыщенности

Наверху - яркий теплый зеленый цвет , внизу - тот же цвет с добавлением серого, то есть мягкий теплый зеленый цвет .
Сам цвет находится посередине. Слева - его более светлые варианты, справа - его более насыщенные варианты.

Как можно сделать вывод : и яркие и мягкие цвета бывают светлыми и темными.

Что интересно : при добавлении черного и белого цвет может менять свою "температуру" - характеристику тепло-холод, становясь холоднее. Поскольку и черный и белый, как вы помните, считаются холодными цветами. Особенно это заметно у ярких цветов. Сравните сам цвет, что в середине, самые светлые и самые темные его оттенки. Поэтому, если вам идет один из вариантов цвета - далеко не факт, что пойдет все разнообразие его светлых и темных оттенков.

В общем,если обобщить теорию о характеристиках цвета, получим:

теплый - цвет с теплыми полутонами
холодный - цвет с холодными полутонами
яркий - цвет без добавления серого
мягкий - цвет с добавлением серого
светлый - цвет с добавлением белого
темный - цвет с добавлением черного

Что касается ахроматических цветов, то черный и белый - яркие цвета, серый - мягкий.
Черный - насыщенный цвет, белый - светлый, что же касается серого , то зависит от того, чего в нем больше - белого или черного . Средний серый , который получается при смешивании противоположных цветов - нейтрален, так как в нем 50% белого и 50% черного.

Цветовой тон (оттенок цвета) обозначается такими терминами, как «желтый», «зеленый», «синий» и т. д. Насыщенность - степень или сила выражения цветового тона. Эта характеристика цвета указывает на количество краски или на концентрацию красителя.

Светлота - признак, позволяющий сопоставить всякий хроматический цвет с одним из серых цветов, называемых ахроматическими.

Качественная характеристика хроматического цвета:

· цветовой тон

· светлота

· насыщенность. (Рисунок 8)

Цветовой тон определяет название цвета: зеленый, красный, желтый, синий и др. Это качество цвета, которое позволяет сравнить его с одним из спектральных или пурпурным цветом (кроме хромотических) и дать ему название.

Светлота также является свойством цвета. К светлым можно отнести желтый, розовый, голубой, светло-зеленый и т. п., к темным - синий, фиолетовый, темно-красный и др. цвета.

Светлота характеризует, насколько тот или иной хроматический цвет светлее или темнее другого цвета или насколько данный цвет близок к белому.

Это степень отличия данного цвета от черного. Она измеряется числом порогов различия от данного цвета до черного. Чем светлее цвет, тем выше его светлота. На практике принято заменять этот понятие понятием "яркость".

Термин насыщенность цвета определяется его (цвета) близостью к спектральному. Чем ближе цвет к спектральному, тем он насыщеннее. Например, желтый цвет лимона, оранжевый - апельсина и т. д. Цвет теряет свою насыщенность от примеси белил или черной краски.

Насыщенность цвета характеризует степень отличия хроматического цвета от равного ему по светлоте ахроматического.

ЦВЕТОВОЙ ТОН НАСЫЩЕННОСТЬ СВЕТЛОТА

Цветовой тон определяет место цвета в спектре ("красный-зеленый-желтый-синий") Это главная характеристика цвета. В физическом смысле ЦВЕТОВОЙ ТОН зависит от длины световой волны. Длинные волны - красная часть спектра. Короткие - сдвиг в сине-фиолетовую сторону. Средняя длина волны - это желтые и зеленые цвета, они наиболее оптимальны для глаза.

Существуют АХРОМАТИЧЕСКИЕ цвета. Это черный, белый, и вся шкала серых между ними. Они не имеют ТОНА. Черный - это отсутствие цвета, белый - это смешение всех цветов. Серые обычно получаются от смешения двух и более цветов. Все остальные - ХРОМАТИЧЕСКИЕ цвета.

Степень хроматичности цвета определяется насыщенностью . Это степень удаленности цвета от серого той же светлоты. Представьте, как свежую траву у дороги покрывает пыль слой за слоем. Чем больше слоев пыли, чем слабее виден первоначальный чистый зеленый цвет, тем меньше НАСЫЩЕННОСТЬ этого зеленого. Цвета с максимальной насыщенностью - это спектральные цвета, минимальная насыщенность дает полную ахроматику (отсутствие цветового тона).

Светлота (яркость)- это положение цвета на шкале от белого до черного. Характеризуется словами "темный", "светлый". Сравните цвет кофе и цвет кофе с молоком. Максимальной СВЕТЛОТОЙ обладает белый цвет, минимальной - черный. Некоторые цвета изначально (спектрально) светлее - (желтый). Другие темнее (синий).

В фотошеп: Следующая система, которая используется в компьютерной графике, система HSB . Растровые форматы не используют систему HSB для хранения изображений, так как она содержит всего 3 миллиона цветов.

В системе HSB цвет разлагается на три составляющие:

  1. HUE (Цветовой тон) - частота световой волны, отражающейся от объекта, который вы видите.
  2. SATURATION (Насыщенность) является чистотой цвета. Это соотношение основного тона и равного ему по яркости бесцветно серого. Максимально насыщенный цвет не содержит серого вообще. Чем меньше насыщенность цвета, тем он нейтральней, тем труднее однозначно охарактеризовать его.

· BRIGHTNESS (Яркость) это общая яркость цвета. Минимальное значение этого параметра превращает любой цвет в черный. . (Рисунок 9)


(Рисунок 10)