Реакция активных металлов с водой. Основания. Химические свойства и способы получения

Московский государственный индустриальный университет

Факультет прикладной математики и технической физики

Кафедра химии

Лабораторная работа

Химические свойства металлов

Москва 2012

Цель работы. Изучение свойств s -, p -, d -элементов-металлов (Mg, Al, Fe, Zn) и их соединений.

1. Теоретическая часть

Все металлы по своим химическим свойствам являются восстановителями, т.е. они отдают электроны при протекании химической реакции. Атомы металлов относительно легко отдают валентные электроны и переходят в положительно заряженные ионы.

1.1. Взаимодействие металлов с простыми веществами

При взаимодействии металлов с простыми веществами в качестве окислителей обычно выступают неметаллы. Металлы реагируют с неметаллами с образованием бинарных соединений.

1. При взаимодействии с кислородом металлы образуют оксиды:

2Mg + O 2 2MgO,

2Cu + O 2 2CuO.

2. Металлы реагируют с галогенами (F 2 , Cl 2 , Br 2 , I 2) с образованием солей галогеноводородных кислот:

2Na + Br 2 = 2NaBr,

Ba + Cl 2 = BaCl 2 ,

2Fe + 3Cl 2 2FeCl 3 .

3. При взаимодействии металлов с серой образуются сульфиды (соли сероводородной кислоты H 2 S):

4. С водородом взаимодействуют активные металлы с образованием гидридов металлов, которые являются солеподобными веществами:

2Na + H 2 2NaH,

Ca + H 2 CaH 2 .

В гидридах металлов водород имеет степень окисления (-1).

Металлы могут взаимодействовать и с другими неметаллами: азотом, фосфором, кремнием, углеродом с образованием соответственно нитридов, фосфидов, силицидов, карбидов. Например:

3Mg + N 2 Mg 3 N 2 ,

3Ca + 2P Ca 3 P 2 ,

2Mg + Si Mg 2 Si,

4Al + 3C Al 4 C 3 .

5. Металлы могут также взаимодействовать между собой с образованием интерметаллических соединений :

2Mg + Cu = Mg 2 Cu,

2Na + Sb = Na 2 Sb.

Интерметаллическими соединениями (или интерметаллидами ) называют соединения, образуемые между собой элементами, которые относятся обычно к металлам.

1.2. Взаимодействие металлов с водой

Взаимодействие металлов с водой – это окислительно-восстановительный процесс, в котором металл является восстановителем, а вода выполняет роль окислителя. Реакция протекает по схеме:

Me + n H 2 O = Me(OH) n + n /2 H 2 .

С водой при обычных условиях взаимодействуют щелочные и щелочноземельные металлы с образованием растворимых оснований и водорода:

2Na + 2H 2 O = 2NaOH + H 2 ,

Ca + 2H 2 O = Ca(OH) 2 + H 2 .

Магний реагирует с водой при нагревании:

Mg + 2H 2 O Mg(OH) 2 + H 2 .

Железо и некоторые другие активные металлы взаимодействуют с горячим водяным паром:

3Fe + 4H 2 O Fe 3 O 4 + 4H 2 .

Металлы, имеющие положительные электродные потенциалы, не взаимодействуют с водой.

Не взаимодействуют с водой 4d -элементы (кроме Cd), 5d -элементы и Cu (3d -элемент).

1.3. Взаимодействие металлов с кислотами

По характеру действия на металлы наиболее распространенные кислоты можно разделить на две группы.

1. Кислоты-неокислители: хлороводородная (соляная, HCl), бромоводородная (HBr), йодоводородная (HI), фтороводородная (HF), уксусная (CH 3 COOH), разбавленная серная (H 2 SO 4 (разб.)), разбавленная ортофосфорная (H 3 PO 4 (разб.)).

2. Кислоты-окислители: азотная (HNO 3) в любой концентрации, концентрированная серная (H 2 SO 4 (конц.)), концентрированная селеновая (H 2 SeO 4(конц.)) .

Взаимодействие металлов с кислотами-неокислителями . Окисление металлов ионами водорода H + в растворах кислот-неокислителей происходит более энергично, чем в воде.

Все металлы, имеющие отрицательное значение стандартного электродного потенциала, т.е. находящиеся в электрохимическом ряду напряжений до водорода, вытесняют водород из кислот-неокислителей. Реакция протекает по схеме:

Ме + n H + = Me n + + n /2 H 2 .

Например:

2Al +6HCl = 2AlCl 3 + 3H 2 ,

Mg + 2CH 3 COOH = Mg(CH 3 COO) 2 + H 2 ,

2Ti + 6HCl = 2TiCl 3 + 3H 2 .

Металлы с переменной степенью окисления (Fe, Cо, Ni и др.) образуют ионы в своей низшей степени окисления (Fe 2+ , Co 2+ , Ni 2+ и другие):

Fe + H 2 SO 4 (разб) = FeSO 4 + H 2 .

При взаимодействии некоторых металлов с кислотами-неокислителями: HCl, HF, H 2 SO 4 (разб.) , HCN образуются нерастворимые продукты, предохраняющие металл от дальнейшего окисления. Так, поверхность свинца в HCl (разб) и H 2 SO 4(разб) пассивируется плохо растворимыми солями PbCl 2 и PbSO 4 соответственно.

Взаимодействие металлов с кислотами-окислителями . Серная кислота в разбавленном растворе – слабый окислитель, а в концентрированном – очень сильный. Окисляющая способность концентрированной серной кислоты H 2 SO 4 (конц.) определяется анионом SO 4 2  , окислительный потенциал которого значительно выше, чем иона H + . Концентрированная серная кислота является сильным окислителем за счёт атомов серы в степени окисления (+6). Кроме того, в концентрированном растворе H 2 SO 4 содержится мало ионов H + , так как в концентрированном растворе она слабо ионизирована. Поэтому при взаимодействии металлов с H 2 SO 4 (конц.) водород не выделяется.

Реагируя с металлами как окислитель, H 2 SO 4 (конц.) переходит чаще всего в оксид серы (IV) (SO 2), а при взаимодействии с сильными восстановителями – в S или H 2 S:

Me + H 2 SO 4 (конц)  Me 2 (SO 4) n + H 2 O + SO 2 (S, H 2 S).

Для удобства запоминания рассмотрим электрохимический ряд напряжений, который выглядит так:

Li, Rb, K, Cs, Ba, Sr, Ca, Na, Mg, Be, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au .

В табл. 1. представлены продукты восстановления концентрированной серной кислоты при взаимодействии с металлами различной активности.

Таблица 1.

Продукты взаимодействия металлов с концентрированной

серной кислотой

Cu + 2H 2 SO 4 (конц) = CuSO 4 + SO 2 + 2H 2 O,

4Mg + 5H 2 SO 4 (конц) = 4MgSO 4 + H 2 S + 4H 2 O.

Для металлов средней активности (Mn, Cr, Zn, Fe) соотношение продуктов восстановления зависит от концентрации кислоты.

Общая тенденция такова: чем выше концентрация H 2 SO 4 , тем глубже протекает восстановление.

Это означает, что формально каждый атом серы из молекулH 2 SO 4 может забрать у металла не только два электрона (и перейти в ), но и шесть электронов (и перейти в) и даже восемь (и перейти в):

Zn + 2H 2 SO 4 (конц) = ZnSO 4 + SO 2 + 2H 2 O,

3Zn + 4H 2 SO 4 (конц) = 3ZnSO 4 + S + 4H 2 O,

4Zn + 5H 2 SO 4 (конц) = 4ZnSO 4 + H 2 S + 4H 2 O.

Свинец с концентрированной серной кислотой взаимодействует с образованием растворимого гидросульфата свинца (II), оксида серы (IV) и воды:

Pb + 3H 2 SO 4 = Pb(HSO 4) 2 + SO 2 + 2H 2 O.

Холодная H 2 SO 4 (конц) пассивирует некоторые металлы (например, железо, хром, алюминий), что позволяет перевозить кислоту в стальной таре. При сильном нагревании концентрированная серная кислота взаимодействует и с этими металлами:

2Fe + 6H 2 SO 4 (конц) Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O.

Взаимодействие металлов с азотной кислотой. Окислительная способность азотной кислоты определяется анионом NO 3  , окислительный потенциал которого значительно выше, чем ионов H + . Поэтому при взаимодействии металлов с HNO 3 водород не выделяется. Нитрат-ион NO 3  , имеющий в своём составе азот в степени окисления (+ 5), в зависимости от условий (концентрации кислоты, природы восстановителя, температуры) может принимать от одного до восьми электронов. Восстановление аниона NO 3  может протекать с образованием различных веществ по следующим схемам:

NO 3  + 2H + + e = NO 2 + H 2 O,

NO 3  + 4H + + 3e = NO + 2H 2 O,

2NO 3  + 10H + + 8e = N 2 O + 5H 2 O,

2NO 3  + 12H + + 10e = N 2 + 6H 2 O,

NO 3  + 10H + + 8e = NH 4 + + 3H 2 O.

Азотная кислота обладает окислительной способностью при любой концентрации. При прочих равных условиях проявляются следующие тенденции: чем активнее металл, реагирующий с кислотой, и чем меньше концентрация раствора азотной кислоты , тем более глубоко она восстанавливается .

Это можно пояснить следующей схемой:

, ,
,
,

Концентрация кислоты

Активность металла

Окисление веществ азотной кислотой сопровождается образованием смеси продуктов её восстановления (NO 2 , NO, N 2 O, N 2 , NH 4 +), состав которых определяется природой восстановителя, температурой и концентрацией кислоты. Среди продуктов преобладают оксиды NO 2 и NO. Причём при взаимодействии с концентрированным раствором HNO 3 чаще выделяется NO 2 , а с разбавленной – NO.

Уравнения окислительно-восстановительных реакций с участием HNO 3 составляются условно, с включением только одного продукта восстановления, образующегося в большем количестве:

Me + HNO 3  Me (NO 3) n + H 2 O + NO 2 (NO, N 2 O, N 2 , NH 4 +).

Например, в газовой смеси, образующейся при действии на достаточно активный металл цинк (
= - 0,76 B) концентрированной (68%-й) азотной кислоты, преобладает – NO 2 , 40%-й – NO; 20%-й – N 2 O; 6%-й – N 2 . Очень разбавленная (0,5%-я) азотная кислота восстанавливается до ионов аммония:

Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O,

3Zn + 8HNO 3 (40%) = 3Zn(NO 3) 2 + 2NO + 4H 2 O,

4Zn + 10HNO 3 (20%) = 4Zn(NO 3) 2 + N 2 O + 5H 2 O,

5Zn + 12HNO 3 (6%) = 5Zn(NO 3) 2 + N 2 + 6H 2 O,

4Zn + 10HNO 3 (0,5%) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O.

С малоактивными металлом медью (
= + 0,34B) реакции идут по следующим схемам:

Cu + 4HNO 3 (конц) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O,

3Cu + 8HNO 3 (разб) = 3 Cu(NO 3) 2 + 2NO + 4H 2 O.

В концентрированной HNO 3 растворяются практически все металлы, кроме Au, Ir, Pt, Rh, Ta, W, Zr. А такие металлы как Al, Be, Bi, Co, Cr, Fe, Nb, Ni, Pb, Th, U, а также нержавеющие стали пассивируются кислотой с образованием устойчивых оксидных плёнок, плотно прилегающих к поверхности металла и защищающих его от дальнейшего окисления. Однако Al и Fe начинают растворяться при нагревании, а Cr устойчив к действию даже горячей HNO 3:

Fe + 6HNO 3 Fe(NO 3) 3 + 3NO 2 + 3H 2 O.

Металлы, для которых характерны высокие степени окисления (+6, +7, +8), с концентрированной азотной кислотой образуют кислородсодержащие кислоты. При этом HNO 3 восстанавливается до NO, например:

3Re + 7HNO 3 (конц) = 3HReO 4 + 7NO + 2H 2 O.

В очень разбавленной HNO 3 уже отсутствуют молекулы HNO 3 , существуют только ионы H + и NO 3  . Поэтому очень разбавленная кислота (~ 3-5%) взаимодействует с Al и не переводит в раствор Cu и другие мало активные металлы:

8Al + 30HNO 3 (очень разб) = 8Al(NO 3) 3 + 3NH 4 NO 3 + 9H 2 O.

Смесь концентрированных азотной и соляной кислот (1:3) называется царской водкой. Она растворяет Au и платиновые металлы (Pd, Pt, Os, Ru). Например:

Au + HNO 3 (конц.) + 4HCl = H + NO + 2H 2 O.

Указанные металлы растворяются в HNO 3 и в присутствии других комплексообразователей, но процесс протекает очень медленно.

По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

Металлы занимают в Периодической таблице левый нижний угол. Металлы относятся к семействам s-элементов, d-элементов, f-элементов и частично - р-элементов.

Самым типичным свойством металлов является их способность отдавать электроны и переходить в положительно заряженные ионы. Причём металлы могут проявлять только положительную степень окисления.

Ме - ne = Me n +

1. Взаимодействие металлов с неметаллами.

а) Взаимодействие металлов с водородом .

С водородом непосредственно реагируют щелочные и щелочноземельные металлы, образуя гидриды .

Например :

Ca + H 2 = CaH 2

Образуются нестехиометрические соединения с ионной кристаллической структурой.

б) Взаимодействие металлов с кислородом.

Все металлы за исключением Au, Ag, Pt окисляются кислородом воздуха.

Пример:

2Na + O 2 = Na 2 O 2 (пероксид)

4K + O 2 = 2K 2 O

2Mg + O 2 = 2MgO

2Cu + O 2 = 2CuO

в) Взаимодействие металлов с галогенами .

Все металлы реагируют с галогенами с образованием галогенидов.

Пример:

2Al + 3Br 2 = 2AlBr 3

В основном это ионные соединения: MeHal n

г) Взаимодействие металлов с азотом .

С азотом взаимодействуют щелочные и щелочноземельные металлы.

Пример :

3Ca + N 2 = Ca 3 N 2

Mg + N 2 = Mg 3 N 2 - нитрид.

д) Взаимодействие металлов с углеродом .

Соединения металлов и углерода - карбиды. Они образуются при взаимодействии расплавов с углеродом. Активные металлы образуют с углеродом стехиометрические соединения:

4Al + 3C = Al 4 C 3

Металлы - d-элементы образуют соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC - используются для получения сверхтвёрдых сталей.

2. Взаимодействие металлов с водой.

С водой реагируют металлы, имеющие более отрицательный потенциал, чем окислительно-восстановительный потенциал воды.

Активные металлы более активно реагируют с водой, разлагая воду с выделением водорода.

Na + 2H 2 O = H 2 + 2NaOH

Менее активные металлы медленно разлагают воду и процесс тормозится из-за образования нерастворимых веществ.

3. Взаимодействие металлов с растворами солей.

Такая реакция возможна, если реагирующий металл активнее, чем находящийся в соли:

Zn + CuSO 4 = Cu 0 ↓ + ZnSO 4

0,76 B., = + 0,34 B.

Металл, обладающий более отрицательным или менее положительным стандартным электродным потенциалом, вытесняет другой металл из раствора его соли.

4. Взаимодействие металлов с растворами щелочей.

Со щелочами могут взаимодействовать металлы, дающие амфотерные гидрооксиды или обладающие высокими степенями окисления в присутствии сильных окислителей. При взаимодействии металлов с растворами щелочей, окислителем является вода.

Пример :

Zn + 2NaOH + 2H 2 O = Na 2 + H 2


1 Zn 0 + 4OH - - 2e = 2- окисление

Zn 0 - восстановитель

1 2H 2 O + 2e = H 2 + 2OH - восстановление

H 2 O - окислитель

Zn + 4OH - + 2H 2 O = 2- + 2OH - + H 2

Металлы, обладающие высокими степенями окисления, могут взаимодействовать со щелочами при сплавлении:

4Nb +5O 2 +12KOH = 4K 3 NbO 4 + 6H 2 O

5. Взаимодействие металлов с кислотами.

Это сложные реакции, продукты взаимодействия зависят от активности металла, от вида и концентрации кислоты и от температуры.

По активности металлы условно делятся на активные, средней активности и малоактивные.

Кислоты условно делятся на 2 группы:

I группа - кислоты, обладающие невысокой окислительной способностью: HCl, HI, HBr, H 2 SO 4(разб.) , H 3 PO 4 , H 2 S, окислитель здесь H + . При взаимодействии с металлами выделяется кислород (H 2 ). С кислотами первой группы реагируют металлы, обладающие отрицательным электродным потенциалом.

II группа - кислоты, обладающие высокой окислительной способностью: H 2 SO 4(конц.) , HNO 3(разб.) , HNO 3(конц.) . В этих кислотах окислителями являются анионы кислоты: . Продукты восстановления аниона могут быть самыми разнообразными и зависят от активности металла.

H 2 S - c активными металлами

H 2 SO 4 +6е S 0 ↓ - с металлами средней активности

SO 2 - c малоактивными металлами

NH 3 (NH 4 NO 3)- c активными металлами

HNO 3 +4,5e N 2 O, N 2 - с металлами средней активности

NO - c малоактивными металлами

HNO 3(конц.) - NO 2 - c металлами любой активности.

Если металлы обладают переменной валентностью, то с кислотами I группы металлы приобретают низшую положительную степень окисления: Fe → Fe 2+ , Cr → Cr 2+ . При взаимодействии с кислотами II группы - степень окисления +3: Fe → Fe 3+ , Cr → Cr 3+ , при этом никогда не выделяется водород.

Некоторые металлы (Fe, Cr, Al, Ti, Ni и др.) в растворах сильных кислот, окисляясь, покрываются плотной оксидной плёнкой, которая защищает металл от дальнейшего растворения (пассивация), но при нагревании оксидная плёнка растворяется, и реакция идёт.

Малорастворимые металлы, обладающие положительным электродным потенциалом, могут растворяться в кислотах I группы, в присутствии сильных окислителей.

Химические свойства металлов: взаимодействие с кислородом, галогенами, серой и отношение к воде, кислот, солей.

Химические свойства металлов обусловлены способностью их атомов легко отдавать электроны с внешнего энергетического уровня, превращаясь в положительно заряженные ионы. Таким образом в химических реакциях металлы проявляют себя энергичными восстановителями. Это является их главной общей химической свойством.

Способность отдавать электроны у атомов отдельных металлических элементов различна. Чем легче металл отдает свои электроны, тем он активнее, и тем энергичнее реагирует с другими веществами. На основе исследований все металлы были расположены в ряд по уменьшению их активности. Этот ряд впервые предложил выдающийся ученый Н. Н. Бекетов. Такой ряд активности металлов называют еще вытеснительный рядом металлов или электрохимическим рядом напряжений металлов. Он имеет следующий вид:

Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H2 , Cu, Hg, Ag, Рt, Au

С помощью этого ряда можно обнаружить какой металл является активным другого. В этом ряду присутствует водород, который не является металлом. Его видны свойства приняты для сравнения за своеобразный ноль.

Имея свойства восстановителей, металлы реагируют с различными окислителями, прежде всего с неметаллами. С кислородом металлы реагируют при нормальных условиях или при нагревании с образованием оксидов, например:

2Mg0 + O02 = 2Mg+2O-2

В этой реакции атомы магния окисляются, атомы кислорода восстанавливаются. Благородные металлы, находящиеся в конце ряда, с кислородом реагируют. Активно происходят реакции с галогенами, например, сгорания меди в хлоре:

Cu0 + Cl02 = Cu+2Cl-2

Реакции с серой, чаще всего происходят при нагревании, например:

Fe0 + S0 = Fe+2S-2

Активные металлы, находящиеся в ряду активности металлов в Mg, реагируют с водой с образованием щелочей и водорода:

2Na0 + 2H+2O → 2Na+OH + H02

Металлы средней активности от Al до H2 реагируют с водой в более жестких условиях и образуют при этом оксиды и водород:

Pb0 + H+2O Химические свойства металов: взаимодействие с кислородом Pb+2O + H02.

Способность металла реагировать с кислотами и солями в растворе зависит также от его положения в вытеснительный ряде металлов. Металлы, стоящие в вытеснительный ряде металлов левее водорода, обычно вытесняют (восстанавливают) водород из разбавленных кислот, а металлы, стоящие правее водорода, его не вытесняют. Так, цинк и магний реагируют с растворами кислот, выделяя водород и образуя соли, а медь не реагирует.

Mg0 + 2H+Cl → Mg+2Cl2 + H02

Zn0 + H+2SO4 → Zn+2SO4 + H02.

Атомы металлов в этих реакциях являются восстановителями, а ионы водорода — окислителями.

Металлы реагируют с солями в водных растворах. Активные металлы вытесняют менее активные металлы из состава солей. Определить это можно по ряду активности металлов. Продуктами реакции являются новая соль и новый металл. Так, если железную пластинку погрузить в раствор меди (II) сульфата, через некоторое время на ней выделится медь в виде красного налета:

Fe0 + Cu+2SO4 → Fe+2SO4 + Cu0 .

Но если в раствор меди (II) сульфата погрузить серебряную пластину, то никакой реакции не произойдет:

Ag + CuSO4 ≠ .

Для проведения таких реакции нельзя брать слишком активные металлы (от лития до натрия), которые способны реагировать с водой.

Следовательно, металлы способны реагировать с неметаллами, водой, кислотами и солями. Во всех этих случаях металлы окисляются и являются восстановителями. Для прогнозирования течения химических реакций с участием металлов следует использовать вытеснительный ряд металлов.

1. Металлы реагируют с неметаллами.

2 Me + n Hal 2 → 2 MeHal n

4Li + O2 = 2Li2O

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2

2. Металлы, стоящие до водорода, реагируют с кислотами (кроме азотной и серной конц.) с выделением водорода

Me + HCl → соль + H2

2 Al + 6 HCl → 2 AlCl3 + 3 H2

Pb + 2 HCl → PbCl2↓ + H2

3. Активные металлы реагируют с водой с образованием щелочи и выделением водорода.

2Me + 2n H 2 O → 2Me(OH) n + n H 2

Продуктом окисления металла является его гидроксид – Me(OH) n (где n-степень окисления металла).

Например:

Ca + 2H 2 O → Ca(OH) 2 + H 2

4. Металлы средней активности реагируют с водой при нагревании, образуя оксид металла и водород.

2Me + nH 2 O → Me 2 O n + nH 2

Продукт окисления в таких реакциях – оксид металла Me 2 O n (где n-степень окисления металла).

3Fe + 4H 2 O → Fe 2 O 3 ·FeO + 4H 2

5. Металлы, стоящие после водорода, с водой и растворами кислот (кроме азотной и серной конц.) не реагируют

6. Более активные металлы вытесняют менее активные из растворов их солей.

CuSO 4 + Zn = Zn SO 4 + Cu

CuSO 4 + Fe = Fe SO 4 + Cu

Активные металлы ‑ цинк и железо заместили медь в сульфате и образовали соли. Цинк и железо окислились, а медь восстановилась.

7. Галогены реагируют с водой и раствором щелочи.

Фтор в отличие от других галогенов воду окисляет:

2H 2 O + 2F 2 = 4HF + O 2 .

на холоде: Cl2+2KOH=KClO+KCl+H2OCl2+2KOH=KClO+KCl+H2O образуется хлорид и гипохлорит

при нагревании: 3Cl2+6KOH−→KClO3+5KCl+3H2O3Cl2+6KOH→t,∘CKClO3+5KCl+3H2O образуется лорид и хлорат

8 Активные галогены (кроме фтора) вытесняют менее активные галогены из растворов их солей.

9. Галогены не реагируют с кислородом.

10. Амфотерные металлы (Al, Be, Zn) реагируют с растворами щелочей и кислот.

3Zn+4H2SO4=3 ZnSO4+S+4H2O

11. Магний реагирует с углекислым газом и оксидом кремния.

2Мg + CO2 = C + 2MgO

SiO2+2Mg=Si+2MgO

12. Щелочные металлы (кроме лития) с кислородом образуют пероксиды.

2Na + O 2 = Na 2 O 2

3. Классификация неорганических соединений

Простые вещества – вещества, молекулы которых состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения) – вещества, молекулы которых состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Простые вещества разбиваются на две большие группы: металлы и неметаллы.

Металлы – группа элементов, обладающая характерными металлическими свойствами: твёрдые вещества (исключение составляет ртуть) имеют металлический блеск, являются хорошими проводниками теплоты и электричества, ковкие (железо (Fe), медь (Cu), алюминий (Al), ртуть (Hg), золото (Au), серебро (Ag) и др.).

Неметаллы – группа элементов: твёрдые, жидкие (бром) и газообразные веществ, которые не обладают металлическим блеском, являются изоляторы, хрупкие.

А сложные вещества в свою очередь подразделятся на четыре группы, или класса: оксиды, основания, кислоты и соли.

Оксиды – это сложные вещества, в состав молекул которых входят атомы кислорода и какого – нибудь другого вещества.

Основания – это сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами.

С точки зрения теории электролитической диссоциации, основания – сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH4+) и гидроксид – анионы OH-.

Кислоты – это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла.

Соли – это сложные вещества, молекулы которых состоят из атомов металлов и кислотных остатков. Соль представляет собой продукт частичного или полного замещения атомов водорода кислоты металлом.