Теории дрейфа материков и литосферных плит. Литосферные плиты Крупнейшие тектонические плиты

Здравствуйте дорогой читатель. Никогда ранее я не думал, что мне придётся писать эти строки. Довольно долго не решался записать всё то, что мне суждено было открыть, если это вообще так можно назвать. До сих пор порой задумываюсь, а не сошел ли я с ума.

Как то вечером ко мне подошла дочь с просьбой показать на карте где и какой океан находится на нашей планете, а так как печатной физической карты мира у меня дома нет, то я открыл на компьютере электронную карту Google, переключил её в режим вида со спутника и начал ей потихоньку всё объяснять. Когда от Тихого океана дошел до Атлантического и приблизил поближе, чтобы показать дочери получше, то меня словно током ударило и я вдруг увидел то что видит любой человек на нашей планете, но совершенно другими глазами. Как и все я до этого момента не понимал что такое же вижу на карте, а тут у меня словно глаза открылись. Но всё это эмоции, а из эмоций щи не сваришь. Так что давайте попробуем вместе увидеть что же такое мне открылось карте Google, а открылось ни много ни мало - след столкновения нашей Земли Матушки с неведомым небесным телом, приведшего к тому, что принято называть Великим Потом.


Посмотрите внимательно в левый нижний угол фотографии и задумайтесь: вам это ничего не напоминает?Не знаю как вам, а мне это напоминает четкий след от удара некого округлого небесного тела о поверхность нашей планеты. Причём удар был перед материком Южная Америка и Антарктида, которые от удара теперь слегка вогнуты в сторону направления удара и разделяются в этом месте проливом, носящим имя пролив Дрейка, пирата, который якобы и открыл этот пролив в прошлом.

На самом же деле этот пролив представляет собой рытвину, оставленную в момент удара и заканчивающуюся округлым «пятном контакта» небесного тела с поверхностью нашей планеты. Давайте посмотрим на это «пятно контакта» поближе и повнимательнее.

Приблизив, мы видим округлое пятно, имеющее вогнутую поверхность и заканчивающееся справа, то есть со стороны по направлению удара, характерным холмом с практически отвесной гранью, имеющей опять же характерные возвышения, которые выходят на поверхность мирового океана в виде островов. Для того чтобы лучше понять характер образования этого «пятна контакта» вы можете проделать такой же опыт, какой проделал я. Для опыта необходима мокрая песчаная поверхность. Прекрасно подойдёт поверхность песка на берегу реки или моря. Во время опыта необходимо произвести плавное движение рукой, во время которого вы ведете рукой над песком, затем касаетесь пальцем песка и, не прекращая движение руки, оказываете на него давление, тем самым сгребая некоторое количество песка пальцем и затем через некоторое время производите отрыв своего пальца от поверхности песка. Проделали? А теперь посмотрите на результат данного несложного опыта и вы увидите картину, полностью аналогичную той, что представлена на фото ниже.

Есть ещё один забавный нюанс. По заявлениям исследователей, северный полюс нашей планеты в прошлом сместился примерно на две тысячи километров. Если же измерить протяженность так называемой рытвины на дне океана в проливе Дрейка и заканчивающейся «пятном контакта», то она так же примерно соответствует двум тысячам километров. На фото я сделал замер средствами программы Google Maps. Причем исследователи не могут ответить на вопрос что послужило причиной сдвига полюса. Я не берусь утверждать с вероятностью в 100 %, но всё же стоит задуматься над вопросом: а не эта ли катастрофа послужила причиной смещения полюсов планеты Земля на эти самые две тысячи километров?

Теперь давайте зададимся вопросом: что же произошло, после того как небесное тело ударило по касательной в планету и вновь ушло в просторы космоса? Вы спросите: почему по касательной и почему обязательно ушло, а не пробило поверхность и погрузилось в недра планеты? Тут всё тоже очень просто объясняется. Не стоит забывать о направлении вращения нашей планеты. Именно то стечение обстоятельств, что небесное тело дарило по ходу вращения нашей планеты спасло её от разрушения и позволило небесному телу так сказать соскользнуть и уйти прочь, а не зарыться в недра планеты. Не меньшая удача была в том, что удар пришелся в океан перед материком, а не в сам материк, так как воды океана несколько сдемпфировали удар и сыграли роль своеобразной смазки при соприкосновении небесных тел, но этот факт имел и обратную сторону медали - воды океана сыграли и свою разрушительную роль уже после отрыва тела и ухода его в космос.

Теперь давайте посмотрим что же произошло далее. Думаю, никому не надо доказывать, что следствием удара, приведшего к образованию пролива Дрейка, послужило образование огромной многокилометровой волны, которая на огромной скорости понеслась вперёд, сметая всё на своём пути. Давайте проследим путь этой волны.

Волна пересекла Атлантический океан и первой преградой на её пути встала южная оконечность Африки, правда она пострадала относительно немного, та как волна задела её своим краем и слегка повернула к югу, где налетела на Австралию. А вот Австралии повезло гораздо меньше. Она приняла на себя удар волны и была практически смыта, что очень хорошо видно на карте.

Далее волна пересекла Тихий океан и прошла между Америками, опять же своим краем зацепив Северную Америку. Последствия этого мы видим и на карте и в фильмах Склярова, который весьма живописно расписал последствия Великого Потопа в Северной Америке. Если кто не смотрел или уже подзабыл, то может пересмотреть эти фильмы, благо они давно уже выложены в свободный доступ в сети Интернет. Это весьма познавательные фильмы, правда далеко не всё в них стоит воспринимать всерьёз.


Далее волна второй раз пересекла Атлантический океан и всей своей массой на полном ходу ударила в северную оконечность Африки, сметая и смывая всё на своём пути. Это так же прекрасно видно на карте. С моей точки зрения таким странным расположением пустынь на поверхности нашей планеты мы обязаны вовсе не причудам климата и не безрассудной деятельности человека, а именно разрушительному и безпощадному воздействию волны во время Великого потопа, которая не только сметала всё на своём пути, но и в буквальном смысле этого слова всё смывала, включая не только постройки и растительность, но и плодородный слой почвы на поверхности материков нашей планеты.

После Африки волна прокатилась по Азии и вновь пересекла Тихий океан и, пройдя в разрез между нашим материком и Северной Америкой ушла на северный полюс через Гренландию. Достигнув северного полюса нашей планеты волна сама себя погасила, т. к. она исчерпала и свою мощь, последовательно тормозясь о материки, на которые она налетала и тем что на северном полюсе в конце концов догнала сама себя.

После этого пошел откат воды уже потухшей волны со стороны Северного полюса на юг. Часть воды прошла через наш материк. Именно этим можно объяснить объяснить до сих пор затопленную северную оконечность нашего материка и забросанный землёй Финский залив и города западной Европы, в том числе наш Петроград и Москву, погребённые под многометровым слоем земли, которую принесли, отхлынувшего с Северного полюса.

Карта тектонических плит и разломов Земной коры

Если был удар небесного тела, то вполне разумно поискать его последствия в толще Земной коры. Ведь удар такой силы просто не мог не оставить никаких следов. Давайте обратимся к карте тектонических плит и разломов Земной коры.

Что же мы там видим на этой карте? На карте четко виден тектонический разлом на месте не только следа, оставленного небесным телом, но и вокруг так называемого «пятна контакта» на месте отрыва небесного тела от поверхности Земли. И эти разломы лишний раз подтверждают правильность моих выводов об ударе некого небесного тела. И удар был такой силы, что не только снёс перешеек между Южной Америкой и Антарктидой, но и привёл к образованию тектонического разлома в Земной коре в данном месте.

Странности траектории движения волны по поверхности планеты

Думаю стоит поговорить ещё об одном аспекте движения волны, а именно о её непрямолинейности и неожиданных отклонениях то в одну, то в другую сторону. Нас всех с детства приучили считать, что мы проживаем на планете, которая имеет форму шара, который слегка сплюснут с полюсов.

Я довольно долго и сам придерживался такого же мнения. И каково же было моё удивление, когда в 2012 году мне попались результаты исследования Европейского космического агентства ESA с использованием данных, полученных аппаратом GOCE (Gravity field and steady-state Ocean Circulation Explorer — спутник для исследования гравитационного поля и постоянных океанических течений).

Ниже я привожу несколько фотографий настоящей формы нашей планеты. Причём стоит учесть тот факт, что это форма самой планеты без учета находящихся на её поверхности вод, образующих мировой океан. Вы можете задать вполне законный вопрос: какое отношение эти фотографии имеют к обсуждаемой здесь теме? С моей точки зрения самое что ни на есть прямое. Ведь мало того, что волна движется по поверхности небесного тела, имеющего неправильную форму, но на её движение оказывает удары фронта волны.

Какими бы ни были циклопическими размеры волны, но сбрасывать со счетов эти факторы нельзя, ведь то что мы считаем прямой линией на поверхности глобуса, имеющего форму правильного шара, на деле оказывается далёкой от прямолинейной траектории и наоборот - то что в реальности является прямолинейной траекторией на поверхности неправильной формы на глобусе превратится в замысловатую кривую.

И это мы ещё не рассматривали тот факт, что при движении по поверхности планеты, волна многократно встречала на своём пути различные препятствия в виде материков. И если вернуться к предполагаемой траектории движения волны по поверхности нашей планеты, то можно заметить, что и Африку в первый раз и Австралию она задевала своей периферийной частью, а не всем фронтом. Это не могло не влиять не только на саму траекторию движения, но и на рост фронта волны, который каждый раз при встрече с препятствием частично обрывался и волне приходилось начинать расти заново. А если рассмотреть момент её прохождения между двумя Америками, то нельзя не заметить тот факт, что при этом фронт волны не только в очередной раз был усечен, но и часть волны за счет переотражения повернула на юг и смыла побережье Южной Америки.

Примерное время катастрофы

Теперь попробуем выяснить когда же произошла эта катастрофа. Для этого можно было бы снарядить экспедицию на место катастрофы, детально его обследовать, взять всевозможные пробы грунта, пород и пытаться их исследовать в лабораториях, затем проследовать по маршруту движения Великого потопа и вновь проделать ту же работу. Но всё это стоило бы громадных денег, растянулось бы на долгие, долгие годы и совсем не обязательно, что на проведение данных работ хватило бы всей моей жизни.

Но так ли всё это необходимо и нельзя ли обойтись хотя бы пока, на первых порах без столь дорогостоящих и ресурсоёмких мероприятий? Я считаю, что на данном этапе для установления примерного времени катастрофы мы с вами вполне сможем обойтись информацией, добытой ранее и находящейся сейчас в открытых источниках, как мы уже сделали при рассмотрении планетарной катастрофы, приведшей к Великому потопу.

Для этого нам следует обратимся к физическим картам мира различных веков и установить когда же на них появился пролив Дрейка. Ведь ранее мы установили, что именно пролив Дрейка образовался в результате и на месте данной планетарной катастрофы.

Ниже представлены физические карты, которые я смог найти в открытом доступе и подлинность которых не вызывает особого недоверия.

Вот карта Мира, датируемая 1570 годом от Рождества Христова


Как мы видим, на этой карте пролива Дрейка нет и Южная Америка всё ещё соединяется с Антарктидой. А это значит, что в шестнадцатом веке катастрофы ещё не было.

Давайте возьмём карту начала семнадцатого века и проверим не появились ли пролив Дрейка и своеобразные очертания Южной Америки и Антарктиды на карте в семнадцатом веке. Ведь не могли же мореплаватели не заметить такого изменения в ландшафте планеты.

Вот карта, датируемая началом семнадцатого века. К сожалению более точной датировки, как в случае с первой картой, у меня нет. На ресурсе, где я нашел эту карту, стояла именно такая датировка «начало семнадцатого века». Но в данном случае это не носит принципиального характера.

Дело в том, что и на этой карте и Южная Америка и Антарктида и перемычка между ними находятся на своём месте, а следовательно либо катастрофа ещё не случилась, либо картограф не знал о произошедшем, правда в это верится с трудом, зная масштаб катастрофы и все те последствия, к которым она привела.

Вот очередная карта. На этот раз датировка карты более точная. Она датируется так же семнадцатым веком - это 1630 год от Рождества Христова.


И что же мы видим на этой карте? Хоть очертания материков прорисованы на ней и не столь хорошо, как в предыдущей, но отчетливо видно, что пролива в современном его виде на карте нет.

Ну что ж, видимо и в данном случае повторяется картина, описанная при рассмотрении предыдущей карты. Продолжаем движение по временной шкале в сторону наших дней и в очередной раз берём карту более свежую, чем предыдущая.

На этот раз физической карты мира я не нашел. Нашел карту Северной и Южной Америк, кроме того на ней не отображена Антарктида вообще. Но это ведь не столь важно. Ведь очертания южной оконечности Южной Америки мы помним по предыдущим картам и любые в них изменения то мы сможем заметить и без Антарктиды. Зато с датировкой карты в этот раз полный порядок - она датирована самым концом семнадцатого века, а именно 1686 годом от Рождества Христова.

Давайте посмотрим на Южную Америку и сверим её очертания с тем, что видели на предыдущей карте.

На этой карте мы видим наконец-то не набившие уже оскомину допотопные очертания Южной Америки и перешеек, соединяющий Южную Америку с Антарктидой на месте современного и привычного пролива Дрейка, а самую что ни на есть привычную современную Южную Америку с изогнутой в сторону «пятна контакта» южной оконечностью.


Какие выводы можно сделать из всего изложенного выше? Есть два довольно простых и очевидных вывода:



    1. Если допустить, что картографы действительно составляли карты в те времена, которыми датированы карты, то катастрофа произошла в пятидесятилетний промежуток между 1630 и 1686 годами.





    1. Если допустить, что картографы для составления своих карт использовали древние карты и лишь копировали их и выдавали за свои, то можно утверждать лишь то, что катастрофа произошла ранее 1570 года от рождества Христова, а в семнадцатом веке при повторном заселении Земли были установлены неточности уже имеющихся карт и в них были внесены уточнения для приведения их в соответствие с реальным ландшафтом планеты.



Какой из этих выводов правильный, а какой ложный я, к моему великому сожалению, судить не могу, т. к. для этого имеющейся информации пока явно недостаточно.

Подтверждение катастрофы

Где же можно найти подтверждение факта катастрофы, кроме физических карт, о которых мы говорили выше. Боюсь показаться неоригинальным, но ответ будет довольно прорст: во первых у нас с вами под ногами и во вторых в произведениях искусства, а именно в картинах художников. Сомневаюсь, что кто-либо из очевидцев смог бы запечатлеть саму волну, но вот последствия этой трагедии вполне себе запечатлевали. Существовало довольно большое количество художников, которые писали картины, на которых отражалась картина жуткой разрухи, которая царила в семнадцатом и восемнадцатом веках на месте Египта, современной западной Европы и Руси Матушки. Вот только предусмотрительно нам объявили, что эти художники писали не с натуры, а отображали на свотх полотнах так называемый воображаемый ими мир. Приведу работы лишь нескольких довольно ярких представителей сего жанра:

Вот как выглядели ставшие уже нам привычные древности Египта, до того как их в буквальном смысле этого слова откопали из под толстого слоя песка.

А что же в это время было в Европе? Нам помогут понять Giovanni Battista Piranesi, Hubert Robert и Charles-Louis Clerisseau.

Но это далеко не все факты, что можно привести в подтверждение катастрофы и которые ещё только предстоит мне систематизировать и описать. Есть ещё засыпанные землёй на несколько метров города на Руси Матушке, есть Финский залив, который так же засыпан землёй и стал по настоящему судоходным лишь в конце девятнадцатого века, когда по его дну был прокопан первый в мире морской канал. Есть солёные пески Москва-реки, морские раковины и чертовы пальцы, которые я ещё пацаном откапывал в лесных песках в Брянской области. Да и сам Брянск, который по официальной исторической легенде получил своё название от дебрей, якобы на месте которых он стоит, правда дебрями на Брянщине и не пахнет, но это предмет отдельного разговора и Бог даст в будущем я опубликую свои мысли на эту тему. Есть залежи костей и туш мамонтов, мясом которых ещё в конце двадцатого века в Сибири кормили собак. Всё это я более подробно рассмотрю в следующей части этой статьи.

А пока я обращаюсь ко всем читателям, которые потратили своё время и силы и дочитали статью до конца. Не оставайтесь ранодушны -- выссказывайте любые критические замечания, указывайте на неточности и ошибки в моих рассуждениях. Задавайте любые вопросы -- я отвечу на них обязательно!

Тектоника плит

Определение 1

Тектоническая плита – это движущаяся часть литосферы, которая перемещается на астеносфере как относительно жесткий блок.

Замечание 1

Тектоника плит – наука, изучающая структуру и динамику поверхности земли. Установлено, что верхняя динамическая зона Земли фрагментирована в плиты, движущиеся по астеносфере. Тектоника плит описывает, в каком направлении перемещаются литосферные плиты, а также особенности их взаимодействия.

Вся литосфера разделена на большие и более мелкие плиты. Тектоническая, вулканическая и сейсмическая активность проявляется по краям плит, что ведет к формированию крупных горных бассейнов. Тектонические движения способны изменять рельеф планеты. В месте их соединения формируются горы и возвышенности, в местах расхождения образуются впадины и трещины в земле.

В настоящее время движение тектонических плит продолжается.

Движение тектонических плит

Литосферные плиты перемещаются относительно друг друга в среднем со скоростью 2,5 см в год. При движении плиты между собой взаимодействуют, особенно вдоль границ, вызывая значительные деформации в земной коре.

В результате взаимодействия тектонических плит между собой образовались массивные горные хребты и связанные с ними системы разломов (например, Гималаи, Пиренеи, Альпы, Урал, Атлас, Аппалачи, Апеннины, Анды, система разломов Сан-Андреас и др.).

Трение между плитами вызывает большую часть землетрясений на планете, вулканическую активность и образование океанических ям.

В состав тектонических плит входит два типа литосферы: континентальная кора и океаническая кора.

Тектоническая плита может быть трех типов:

  • континентальная плита,
  • океаническая плита,
  • смешанная плита.

Теории движения тектонических плит

В изучении движения тектонических плит особая заслуга принадлежит А. Вегенеру, предположившему, что Африка и восточная часть Южной Америки ранее были единым континентом. Однако после произошедшего много млн. лет назад разлома, начался сдвиг частей земной коры.

Согласно гипотезе Вегенера, тектонические платформы, обладающие разной массой и имеющие жесткую структуру, размещались на пластичной астеносфере. Они пребывали в неустойчивом состоянии и все время перемещались, в результате чего сталкивались, заходили друг на друга, формировались зоны раздвижения плит и стыки. В местах столкновений формировались участки с повышенной тектонической активностью, образовывались горы, извергались вулканы и происходили землетрясения. Смещение происходило со скоростью до 18 см в год. Из глубинных слоев литосферы в разломы проникала магма.

Некоторые исследователи считают, что выходящая на поверхность магма постепенно остывала и формировала новую структуру дна. Незадействованная земная кора под действие дрейфа плит погружалась в недра и снова превращалась в магму.

Исследования Вегенера затронули процессы вулканизма, изучение вопросов растяжения поверхности дна океанов, а также вязко-жидкой внутренней структуры земли. Труды А. Вегенера стали фундаментом для развития теории тектоники литосферных плит.

Исследования Шмеллинга доказали существование конвективного движения внутри мантии и приводящего к движению литосферных плит. Ученый считал, что основная причина движения тектонических плит – тепловая конвекция в мантии планеты, при которой нижние слои земной коры нагреваются и поднимаются, а верхние – остывают и постепенно опускаются.

Основное положение в теории тектоники плит занимает понятие геодинамической обстановки, характерной структуры с определенным соотношением тектонических плит. В одинаковой геодинамической обстановке наблюдаются однотипные магматические, тектонические, геохимические и сейсмические процессы.

Теория тектоники плит не объясняет полностью связи между движениями плит и происходящими в глубине планеты процессами. Необходима теория, которая могла бы описать внутреннее строение самой земли, процессы, происходящие в ее недрах.

Положения современной тектоники плит:

  • верхняя часть земной коры включает литосферу, обладающую хрупкой структурой и астеносферу, имеющую пластичную структуру;
  • основная причина движения плит – конвекция в астеносфере;
  • современная литосфера состоит из восьми крупных тектонических плит, порядка десяти средних плит и множества мелких;
  • мелкие тектонические плиты располагаются между крупными;
  • магматическая, тектоническая и сейсмическая активность сосредоточены на границах плит;
  • движение тектонических плит подчиняется теореме вращения Эйлера.

Типы движений тектонических плит

Выделяют различные типы движений тектонических плит:

  • дивергентное движение – две плиты расходятся, и между ними образуется подводная горная цепь или пропасть в земле;
  • конвергентное движение – две плиты сходятся, и более тонкая плита перемещается под более большую плиту, вследствие чего формируются горные хребты;
  • скользящее движение – плиты перемещаются в противоположных направлениях.

В зависимости от типа движения выделяют дивергентные, конвергентные и скользящие тектонические плиты.

Конвергенция приводит к субдукции (одна плита находится над другой) или к коллизии (две плиты сминаются и образуются горные цепи).

Дивергенция ведет к спредингу (расхождение плит и формированием океанических хребтов) и рифтингу (формирование разлома континентальной коры).

Трансформный тип движения тектонических плит подразумевает их перемещение вдоль разлома.

Рисунок 1. Типы движений тектонических плит. Автор24 - интернет-биржа студенческих работ

Согласно современной теории литосферных плит вся литосфера узкими и активными зонами — глубинными разломами — разделена на отдельные блоки, перемещающиеся в пластичном слое верхней мантии относительно друг друга со скоростью 2-3 см в год. Эти блоки называются литосферными плитами.

Особенность литосферных плит — их жесткость и способность при отсутствии внешних воздействий длительное время сохранять неизменными форму и строение.

Литосферные плиты подвижны. Их перемещение по поверхности астеносферы происходит под влиянием конвективных течений в мантии. Отдельные литосферные плиты могут расходиться, сближаться или скользить друг относительно друга. В первом случае между плитами возникают зоны растяжения с трещинами вдоль границ плит, во втором — зоны сжатия, сопровождаемые надвиганием одной плиты на другую (надвигание — обдукция; поддвигание — субдукция), в третьем — сдвиговые зоны — разломы, вдоль которых происходит скольжение соседних плит.

В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. Так возникла, например, на границе Евразийской и Индо-Австралийской плиты горная система Гималаи (рис. 1).

Рис. 1. Столкновение континентальных литосферных плит

При взаимодействии континентальной и океанической плит, плита с океанической земной корой пододвигается под плиту с континентальной земной корой (рис. 2).

Рис. 2. Столкновение континентальной и океанической литосферных плит

В результате столкновения континентальной и океанической литосферных плит образуются глубоководные желоба и островные дуги.

Расхождение литосферных плит и образование в результате этого земной коры океанического типа показано на рис. 3.

Для осевых зон срединно-океанических хребтов характерны рифты (от англ. rift - расщелина, трещина, разлом) — крупная линейная тектоническая структура земной коры протяженностью в сотни, тысячи, шириной в десятки, а иногда и сотни километров, образовавшаяся главным образом при горизонтальном растяжении коры (рис. 4). Очень крупные рифты называются рифтовыми поясами, зонами или системами.

Так как литосферная плита представляет собой единую пластину, то каждый ее разлом — это источник сейсмической активности и вулканизма. Эти источники сосредоточены в пределах сравнительно узких зон, вдоль которых происходят взаимные перемещения и трения смежных плит. Эти зоны получили название сейсмических поясов. Рифы, срединно-океанические хребты и глубоководные желоба являются подвижными областями Земли и располагаются на границах литосферных плит. Это свидетельствует о том, что процесс формирования земной коры в этих зонах в настоящее время происходит очень интенсивно.

Рис. 3. Расхождение литосферных плит в зоне среди нно-океанического хребта

Рис. 4. Схема образования рифта

Больше всего разломов литосферных плит на дне океанов, где земная кора тоньше, однако встречаются они и на суше. Наиболее крупный разлом на суше располагается на востоке Африки. Он протянулся на 4000 км. Ширина этого разлома — 80-120 км.

В настоящее время можно выделить семь наиболее крупных плит (рис. 5). Из них самая большая по площади — Тихоокеанская, которая целиком состоит из океанической литосферы. Как правило, к крупным относят и плиту Наска, которая в несколько раз меньше по размерам, чем каждая из семи самых крупных. При этом ученые предполагают, что на самом деле плита Наска гораздо большего размера, чем мы видим ее на карте (см. рис. 5), так как значительная часть ее ушла под соседние плиты. Эта плита также состоит только из океанической литосферы.

Рис. 5. Литосферные плиты Земли

Примером плиты, которая включает как материковую, так и океаническую литосферу, может служить, например, Индо-Авст- ралийская литосферная плита. Почти целиком состоит из материковой литосферы Аравийская плита.

Теория литосферных плит имеет важное значение. Прежде всего, она может объяснить, почему в одних местах Земли расположены горы, а в других — равнины. С помощью теории литосферных плит можно объяснить и спрогнозировать катастрофические явления, происходящие на границах плит.

Рис. 6. Очертания материков действительно представляются совместимыми

Теория дрейфа материков

Теория литосферных плит берет свое начало из теории дрейфа материков. Еще в XIX в. многие географы отмечали, что при взгляде на карту можно заметить, что берега Африки и Южной Америки при сближении кажутся совместимыми (рис. 6).

Появление гипотезы движения материков связывают с именем немецкого ученого Альфреда Вегенера (1880-1930) (рис. 7), который наиболее полно разработал эту идею.

Вегенер писал: «В 1910 г. мне впервые пришла в голову мысль о перемещении материков..., когда я поразился сходством очертаний берегов по обе стороны Атлантического океана». Он предположил, что в раннем палеозое на Земле существовали два крупных материка — Лавразия и Гондвана.

Лавразия — это был северный материк, который включал территории современной Европы, Азии без Индии и Северной Америки. Южный материк — Гондвана объединял современные территории Южной Америки, Африки, Антарктиды, Австралии и Индостана.

Между Гондваной и Лавразией находилось первое морс — Тетис, как огромный залив. Остальное пространство Земли было занято океаном Панталасса.

Около 200 млн лет назад Гондвана и Лавразия были объединены в единый континент — Пангею (Пан — всеобщий, Ге — земля) (рис. 8).

Рис. 8. Существование единого материка Пангеи (белое — суша, точки — неглубокое море)

Примерно 180 млн лет назад материк Пангея снова начал разделяться на составные части, которые перемешались но поверхности нашей планеты. Разделение происходило следующим образом: сначала вновь появились Лавразия и Гондвана, потом разделилась Лавразия, а затем раскололась и Гондвана. За счет раскола и расхождения частей Пангеи образовались океаны. Молодыми океанами можно считать Атлантический и Индийский; старым — Тихий. Северный Ледовитый океан обособился при увеличении суши в Северном полушарии.

Рис. 9. Расположение и направления дрейфа континентов в меловой период 180 млн лет назад

А. Вегенер нашел много подтверждений существованию единого материка Земли. Особенно убедительным показалось ему существование в Африке и в Южной Америке остатков древних животных — листозавров. Это были пресмыкающиеся, похожие на небольших гиппопотамов, обитавшие только в пресноводных водоемах. Значит, проплыть огромные расстояния по соленой морской воде они не могли. Аналогичные доказательства он нашел и в растительном мире.

Интерес к гипотезе движения материков в 30-е годы XX в. несколько снизился, но в 60-е годы возродился вновь, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и «подныривания» одних частей коры под другие (субдукции).

На прошлой неделе публику всколыхнула новость, что полуостров Крым движется в сторону России не только благодаря политической воле населения, но и согласно законам природы. Что такое литосферные плиты и на каких из них территориально расположена Россия? Что заставляет их двигаться и куда? Какие территории хотят ещё "присоединиться" к России, а какие угрожают "убежать" в США?

"А мы куда-то едем"

Да, мы все куда-то едем. Пока вы читаете эти строки, вы медленно двигаетесь: если вы в Евразии, то на восток со скоростью примерно 2-3 сантиметра в год, если в Северной Америке, то с той же скоростью на запад, а если где-то на дне Тихого океана (как вас туда занесло?), то уносит на северо-запад на 10 сантиметров в год.

Если вы откинетесь в кресле и подождёте примерно 250 миллионов лет, то окажетесь на новом суперконтиненте, который объединит всю земную сушу, - на материке Пангея Ультима, названном так в память о древнем суперконтиненте Пангея, существовавшем как раз 250 миллионов лет назад.

Поэтому известие о том, что "Крым движется", вряд ли можно назвать новостью. Во-первых, потому, что Крым вместе с Россией, Украиной, Сибирью и Евросоюзом является частью Евразийской литосферной плиты, и все они движутся вместе в одну сторону последнюю сотню миллионов лет. Однако Крым - это ещё и часть так называемого Средиземноморского подвижного пояса, он расположен на Скифской плите, а большая часть европейской части России (включая город Санкт-Петербург) - на Восточно-Европейской платформе.

И вот здесь часто возникает путаница. Дело в том, что помимо огромных участков литосферы, таких как Евразийская или Северо-Американская плиты, существуют и совершенно иные "плитки" поменьше. Если очень условно, то земная кора составлена из континентальных литосферных плит. Сами они состоят из древних и очень стабильных платформ и зон горообразования (древних и современных). А уже сами платформы делятся на плиты – более мелкие участки коры, состоящие из двух "слоёв" - фундамента и чехла, и щиты -"однослойные" обнажения.

Чехол у этих нелитосферных плит состоит из осадочных пород (например, известняка, сложенного из множества ракушек морских животных, обитавших в доисторическом океане над поверхностью Крыма) или магматических (выброшенных из вулканов и застывших масс лавы). А ф ундамент плит и щиты чаще всего состоят из очень старых горных пород, главным образом метаморфического происхождения. Так называют магматические и осадочные породы, погрузившиеся в глубины земной коры, где под воздействием высоких температур и огромного давления с ними происходят разнообразные изменения.

Иными словами, большая часть России (за исключением Чукотки и Забайкалья) располагается на Евразийской литосферной плите. Однако её территория "поделена" между Западно-Сибирской плитой, Алданским щитом, Сибирской и Восточно-Европейской платформами и Скифской плитой.

Вероятно, о движении двух последних плит и заявил директор Института прикладной астрономии (ИПА РАН), доктор физико-математических наук Александр Ипатов . А позднее, в интервью изданию Indicator, уточнил: "Мы занимаемся наблюдениями, которые позволяют определить направление движения плит земной коры. Плита, на которой расположена станция Симеиз, движется со скоростью 29 миллиметров в год на северо-восток, то есть туда, где Россия. А плита, где находится Питер, движется, можно сказать, к Ирану, к югу-юго-западу". Впрочем, и это не является таким уж открытием, потому что об этом движении уже несколько десятков лет, а само оно началось ещё в кайнозойскую эру.

Теория Вегенера была принята со скепсисом - в основном потому, что он не мог предложить удовлетворительного механизма, объясняющего движение материков. Он считал, что континенты двигаются, проламывая земную кору, словно ледоколы лёд, благодаря центробежной силе от вращения Земли и приливных сил. Его оппоненты говорили, что континенты-"ледоколы" в процессе движения меняли бы свой облик до неузнаваемости, а центробежные и приливные силы слишком слабы, чтобы служить для них "мотором". Один из критиков подсчитал, что, будь приливное воздействие таким сильным, чтобы настолько быстро двигать континенты (Вегенер оценивал их скорость в 250 сантиметров в год), оно остановило бы вращение Земли меньше чем за год .

К концу 1930-х годов теория дрейфа континента была отвергнута как антинаучная, но к середине XX века к ней пришлось вернуться: были открыты срединно-океанические хребты и оказалось, что в зоне этих хребтов непрерывно образуется новая кора, благодаря чему и "разъезжаются" континенты. Геофизики исследовали намагниченность пород вдоль срединно-океанических хребтов и обнаружили "полосы" с разнонаправленной намагниченностью.

Оказалось, что новая океаническая кора "записывает" состояние магнитного поля Земли в момент образования, и учёные получили отличную "линейку" для измерения скорости этого конвейера. Так, в 1960-е годы теория дрейфа континентов вернулась во второй раз, уже окончательно. И на этот раз учёные смогли понять, что же двигает континенты.

"Льдины" в кипящем океане

"Представьте себе океан, где плавают льдины, то есть в нём есть вода, есть лёд и, допустим, в некоторые льдины вморожены ещё деревянные плоты. Лёд - это литосферные плиты, плоты - это континенты, а плавают они в веществе мантии", -объясняет член-корреспондент РАН Валерий Трубицын, главный научный сотрудник Института физики Земли имени О.Ю. Шмидта.

Он ещё в 1960-е годы выдвинул теорию строения планет-гигантов, а в конце XX века начал создавать математически обоснованную теорию тектоники континентов .

Промежуточный слой между литосферой и горячим железным ядром в центре Земли - мантия - состоит из силикатных пород. Температура в ней меняется от 500 градусов Цельсия в верхней части до 4000 градусов Цельсия на границе ядра. Поэтому с глубины 100 километров, где температура уже более 1300 градусов, вещество мантии ведёт себя как очень густая смола и течёт со скоростью 5-10 сантиметров в год, рассказывает Трубицын.

В результате в мантии, как в кастрюле с кипятком, возникают конвективные ячейки - области, где с одного края горячее вещество поднимается вверх, а с другого - остывшее опускается вниз.

"В мантии есть примерно восемь таких больших ячеек и ещё много мелких", -говорит учёный. Срединно-океанические хребты (например, в центре Атлантики) - это место, где вещество мантии поднимается к поверхности и где рождается новая кора. Кроме того, есть зоны субдукции, места, где плита начинает "подползать" под соседнюю и опускается вниз, в мантию. Зоны субдукции - это, например, западное побережье Южной Америки. Здесь происходят самые мощные землетрясения.

"Таким образом плиты принимают участие в конвективном кругообороте вещества мантии, которое во время нахождения на поверхности временно становится твёрдым. Погружаясь в мантию, вещество плиты снова нагревается и размягчается", - объясняет геофизик.

Кроме того, из мантии к поверхности поднимаются отдельные струи вещества - плюмы, и у этих струй есть все шансы уничтожить человечество. Ведь именно мантийные плюмы являются причиной появления супервулканов (см. ) Такие точки никак не связаны с литосферными плитами и могут оставаться на месте даже при движении плит. При выходе плюма возникает гигантский вулкан. Таких вулканов много, они есть на Гавайях, в Исландии, сходным примером является Йеллоустоунская кальдера. Супервулканы могут порождать извержения в тысячи раз мощнее, чем большинство обычных вулканов типа Везувия или Этны.

"250 миллионов лет назад такой вулкан на территории современной Сибири убил почти всё живое, выжили только предки динозавров", - говорит Трубицын.

Сошлись - разошлись

Литосферные плиты состоят из относительно тяжёлой и тонкой базальтовой океанической коры и более лёгких, но зато значительно более "толстых" континентов. Плита с континентом и "намороженной" вокруг него океанической корой может идти вперёд, при этом тяжёлая океаническая кора погружается под соседа. Но, когда сталкиваются континенты, они уже не могут погружаться друг под друга.

Например, примерно 60 миллионов лет назад Индийская плита оторвалась от того, что потом стало Африкой, и отправилась на север, а примерно 45 миллионов лет назад встретилась с Евразийской плитой, в месте столкновения выросли Гималаи - самые высокие горы на Земле.

Движение плит рано или поздно сведёт все континенты в один, как сходятся в один остров листья в водовороте. В истории Земли континенты примерно четыре-шесть раз объединялись и распадались. Последний суперконтинент Пангея существовал 250 миллионов лет назад, до него был суперконтинент Родиния, 900 миллионов лет назад, до него - ещё два. "И уже, похоже, скоро начнётся объединение нового континента", - уточняет учёный.

Он объясняет, что континенты работают как тепловой изолятор, мантия под ними начинает разогреваться, возникают восходящие потоки и поэтому суперконтиненты через некоторое время снова распадаются.

Америка "унесёт" Чукотку

Крупные литосферные плиты рисуют в учебниках, их может назвать любой: Антарктическая плита, Евразийская, Северо-Американская, Южно-Американская, Индийская, Австралийская, Тихоокеанская. Но на границах между плитами возникает настоящий хаос из множества микроплит.

Например, граница между Северо-Американской плитой и Евразийской проходит совсем не по Берингову проливу, а намного западнее, по хребту Черского. Чукотка, таким образом, оказывается частью Северо-Американской плиты. При этом Камчатка отчасти находится в зоне Охотской микроплиты, а отчасти - в зоне Беринговоморской микроплиты. А Приморье расположено на гипотетической Амурской плите, западный край которой упирается в Байкал.

Сейчас восточная окраина Евразийской плиты и западный край Северо-Американской "крутятся", как шестерёнки: Америка проворачивается против часовой стрелки, а Евразия по часовой. В результате Чукотка может окончательно оторваться "по шву", и в этом случае на Земле может появиться гигантский круговой шов, который будет проходить через Атлантику, Индийский, Тихий и Северный Ледовитый океан (где он пока закрыт). А сама Чукотка продолжит движение "в орбите" Северной Америки.

Спидометр для литосферы

Теория Вегенера возродилась не в последнюю очередь потому, что у учёных появилась возможность с высокой точностью измерять смещение континентов. Сейчас для этого используют спутниковые системы навигации, но есть и другие методы. Все они нужны для построения единой международной системы координат - International Terrestrial Reference Frame (ITRF).

Один из этих методов - радиоинтерферометрия со сверхдлинной базой (РСДБ). Суть её заключается в одновременных наблюдениях с помощью нескольких радиотелескопов в разных точках Земли. Разница во времени получения сигналов позволяет с высокой точностью определять смещения. Два других способа измерить скорость - лазерные дальномерные наблюдения с помощью спутников и доплеровские измерения. Все эти наблюдения, в том числе с помощью GPS, проводятся на сотнях станций, все эти данные сводятся воедино, и в итоге мы получаем картину дрейфа континентов.

Например, крымский Симеиз, где находится станция лазерного зондирования, а также спутниковая станция определения координат, "едет" на северо-восток (по азимуту около 65 градусов) со скоростью примерно 26,8 миллиметра в год. Подмосковный Звенигород движется примерно на миллиметр в год быстрее (27,8 миллиметра в год) и курс держит восточнее - около 77 градусов. А, скажем, гавайский вулкан Мауна-Лоа двигается на северо-запад в два раза быстрее - 72,3 миллиметра в год.

Литосферные плиты тоже могут деформироваться, и их части могут "жить своей жизнью", особенно на границах. Хотя масштабы их самостоятельности значительно скромнее. Например, Крым ещё самостоятельно двигается на северо-восток со скоростью 0,9 миллиметра в год (и при этом растёт на 1,8 миллиметра), а Звенигород с той же скоростью двигается куда-то на юго-восток (и вниз - на 0,2 миллиметра в год).

Трубицын говорит, что эта самостоятельность отчасти объясняется "личной историей" разных частей континентов: основные части континентов, платформы, могут быть фрагментами древних литосферных плит, которые "срослись" со своими соседями. Например, Уральский хребет - один из швов. Платформы относительно жёсткие, но части вокруг них могут деформироваться и ехать по своей воле.

Подробнее в статье История теории тектоники плит

Основой теоретической геологии начала XX века была контракционная гипотеза . Земля остывает подобно испечённому яблоку, и на ней появляются морщины в виде горных хребтов. Развивала эти идеи теория геосинклиналей , созданная на основании изучения складчатых сооружений. Эта теория была сформулирована Дж. Дэна , который добавил к контракционной гипотезе принцип изостазии . Согласно этой концепции Земля состоит из гранитов (континенты) и базальтов (океаны). При сжатии Земли в океанах -впадинах возникают тангенциальные силы , которые давят на континенты. Последние вздымаются в горные хребты, а затем разрушаются. Материал, который получается в результате разрушения, откладывается во впадинах.

Вялотекущая борьба фиксистов, как назвали сторонников отсутствия значительных горизонтальных перемещений, и мобилистов, утверждавших, что они всё таки двигаются, с новой силой разгорелась в 1960-х годах, когда в результате изучения дна океанов были найдены ключи к понимаю «машины» под названием Земля.

К началу 60-х годов была составлена карта рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты , которые возвышаются на 1,5–2 км над абиссальными равнинами , покрытыми осадками. Эти данные позволили Р. Дицу и Г. Хессу в 1962–1963 годах выдвинуть гипотезу спрединга . Согласно этой гипотезе, в мантии происходит конвекция со скоростью около 1 см/год. Восходящие ветви конвекционных ячеек выносят под срединно-океаническими хребтами мантийный материал, который обновляет океаническое дно в осевой части хребта каждые 300–400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно «впаяны» в литосферные плиты. Согласно концепции спрединга, океанические бассейны структуры непостоянные, неустойчивые, континенты же - устойчивые.

В 1963 году гипотеза спрединга получает мощную поддержку в связи с открытием полосовых магнитных аномалий океанического дна. Они были интерпретированы, как запись инверсий магнитного поля Земли , зафиксированная в намагниченности базальтов дна океана. После этого тектоника плит начала победное шествие в науках о Земле. Всё больше учёных понимали, что, чем тратить время на защиту концепции фиксизма, лучше взглянуть на планету с точки зрения новой теории и, наконец-то, начать давать реальные объяснения сложнейшим земным процессам.

Сейчас тектоника плит подтверждена прямыми измерениями скорости плит методом интерферометрии излучения от далёких квазаров и измерениями с помощью GPS . Результаты многолетних исследований полностью подтвердили основные положения теории тектоники плит.

Современное состояние тектоники плит

За прошедшие десятилетия тектоника плит значительно изменила свои основные положения. Ныне их можно сформулировать следующим образом:

  • Верхняя часть твёрдой Земли делится на хрупкую литосферу и пластичную астеносферу . Конвекция в астеносфере - главная причина движения плит.
  • Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Мелкие плиты расположены в поясах между крупными плитами. Сейсмическая , тектоническая и магматическая активность сосредоточена на границах плит.
  • Литосферные плиты в первом приближении описываются как твёрдые тела , и их движение подчиняется теореме вращения Эйлера .
  • Существует три основных типа относительных перемещений плит
  1. расхождение (дивергенция), выраженное рифтингом и спредингом ;
  2. схождение (конвергенция) выраженное субдукцией и коллизией ;
  3. сдвиговые перемещения по трансформным разломам.
  • Спрединг в океанах компенсируется субдукцией и коллизией по их периферии, причём радиус и объём Земли постоянны (это утверждение постоянно обсуждается, но оно так достоверно и не опровергнуто)
  • Перемещение литосферных плит вызвано их увлечением конвективными течениями в астеносфере.

Существует два принципиально разных вида земной коры - кора континентальная и кора океаническая . Некоторые литосферные плиты сложены исключительно океанической корой (пример - крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

Более 90 % поверхности Земли покрыто 8 крупнейшими литосферными плитами:

Среди плит среднего размера можно выделить Аравийский субконтинент, и плиты Кокос и Хуан де Фука , остатки огромной плиты Фаралон , слагавшей значительную часть дна Тихого океана , но ныне исчезнувшую в зоне субдукции под Северной и Южной Америками.

Сила, двигающая плиты

Сейчас уже нет сомнений, что движение плит происходит за счёт мантийных теплогравитационных течений - конвекции . Источником энергии для этих течений служит перенос тепла из центральных частей Земли, которые имеют очень высокую температуру (по оценкам, температура ядра составляет порядка 5000 °С). Нагретые породы расширяются (см. термическое расширение), плотность их уменьшается, и они всплывают, уступая место более холодным породам. Эти течения могут замыкаться и образовывать устойчивые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит в горизонтальной плоскости и именно эта её часть переносит плиты.

Таким образом, движение плит - следствие остывания Земли, при котором часть тепловой энергии превращается в механическую работу, и наша планета в некотором смысле представляет собой тепловой двигатель.

Относительно причины высокой температуры недр Земли существует несколько гипотез. В начале XX века была популярна гипотеза радиоактивной природы этой энергии. Казалось, она подтверждалась оценками состава верхней коры, которые показали весьма значительные концентрации урана , калия и других радиоактивных элементов , но впоследствии выяснилось, что с глубиной содержание радиоактивных элементов резко падает. Другая модель объясняет нагрев химической дифференциацией Земли . Первоначально планета была смесью силикатного и металлического веществ. Но одновременно с образованием планеты началась её дифференциация на отдельные оболочки. Более плотная металлическая часть устремилась к центру планеты, а силикаты концентрировались в верхних оболочках. При этом потенциальная энергия системы уменьшалась и превращалась в тепловую энергию. Другие исследователи полагают, что разогрев планеты произошёл в результате аккреции при ударах метеоритов о поверхность зарождающегося небесного тела.

Второстепенные силы

Тепловая конвекция играет определяющую роль в движениях плит, но кроме неё на плиты действуют меньшие по величине, но не менее важные силы.

При погружении океанической коры в мантию, базальты, из которых она состоит, превращаются в эклогиты , породы более плотные, чем обычные мантийные породы - перидотиты . Поэтому эта часть океанической плиты погружается в мантию, и тянет за собой ещё не эклогитизированную часть.

Дивергентные границы или границы раздвижения плит

Это границы между плитами, двигающимися в противоположные стороны. В рельефе Земли эти границы выражены рифтами, в них преобладают деформации растяжения, мощность коры пониженная, тепловой поток максимален, и происходит активный вулканизм. Если такая граница образуется на континенте, то формируется континентальный рифт, который в дальнейшем может превратиться в океанический бассейн с океаническим рифтом в центре. В океанических рифтах в результате спрединга формируется новая океаническая кора.

Океанические рифты

На океанической коре рифты приурочены к центральным частям срединно-океанических хребтов. В них происходит образование новой океанической коры. Общая их протяжённость более 60 тысяч километров. К ним приурочено множество , которые выносят в океан значительную часть глубинного тепла, и растворённых элементов. Высокотемпературные источники называются чёрными курильщиками , с ними связаны значительные запасы цветных металлов .

Континентальные рифты

Раскол континента на части начинается с образования рифта . Кора утончается и раздвигается, начинается магматизм . Формируется протяжённая линейная впадина глубиной порядка сотен метров, которая ограничена серией сбросов . После этого возможно два варианта развития событий: либо расширение рифта прекращается и он заполняется осадочными породами , превращаясь в авлакоген , либо континенты продолжают раздвигаться и между ними, уже в типично океанических рифтах, начинает формироваться океаническая кора.

Конвергентные границы

Подробнее в статье Зона субдукции

Конвергентными называются границы на которых происходит столкновение плит. Возможно три варианта:

  1. Континентальная плита с океанической. Океаническая кора плотнее, чем континентальная и погружается под континент в зоне субдукции .
  2. Океаническая плита с океанической. В таком случае одна из плит заползает под другую и также формируется зона субдукции, над которой образуется островная дуга .
  3. Континентальная плита с континентальной. Происходит коллизия, возникает мощная складчатая область. Классический пример - Гималаи .

В редких случаях происходит надвигание океанической коры на континентальную - обдукция . Благодаря этому процессу возникли офиолиты Кипра , Новой Каледонии , Омана и другие.

В зонах субдукции поглощается океаническая кора, и тем самым компенсируется её появление в СОХах. В них происходят исключительно сложные процессы, взаимодействия коры и мантии. Так океаническая кора может затягивать в мантию блоки континентальной коры, которые по причине низкой плотности эксгумируются обратно в кору. Так возникают метаморфические комплексы сверхвысоких давлений , один из популярнейших объектов современных геологических исследований.

Большинство современных зон субдукции расположены по периферии Тихого океана , образуя тихоокеанское огненное кольцо . Процессы, идущие в зоне конвегенции плит, по праву считаются одними из самых сложных в геологии. В ней смешиваются блоки разного происходения, образуя новую континентальную кору.

Активные континентальные окраины

Подробнее в статье Активная континентальная окраина

Активная континентальная окраина возникает там, где под континент погружается океаническая кора. Эталоном этой геодинамической обстановки считается западное побережье Южной Америки , её часто называют андийским типом континентальной окраины. Для активной континентальной окраины характерны многочисленные вулканы и вообще мощный магматизм. Расплавы имеют три компонента: океаническую кору, мантию над ней и низы континентальной коры.

Под активной континентальной окраиной происходит активное механическое взаимодействие океанической и континентальной плит. В зависимости от скорости, возраста и мощности океанической коры возможны несколько сценариев равновесия. Если плита двигается медленно и имеет относительно малую мощность, то континент соскабливает с неё осадочный чехол. Осадочные породы сминаются в интенсивные складки, метаморфизуются и становятся частью континентальной коры. Образующая при этом структура называется аккреционным клином . Если скорость погружающейся плиты высока, а осадочный чехол тонок, то океаническая кора стирает низ континента и вовлекает его в мантию.

Островные дуги

Островная дуга

Подробнее в статье Островная дуга

Островные дуги это цепочки вулканических остров над зоной субдукции, возникающие там, где океаническая плита погружается под океаническую. В качестве типичных современных островных дуг можно назвать Алеутские , Курильские , Марианские острова , и многие другие архипелаги . Японские острова также часто называют островной дугой, но их фундамент очень древний и на самом деле они образованы несколькими разновременными комплексами островных дуг, так что Японские острова являются микроконтинентом .

Островные дуги образуются при столкновении двух океанических плит. При этом одна из плит оказывается снизу и поглощается в мантию. На верхней же плите образуются вулканы островной дуги. Выгнутая сторона островной дуги направлена в сторону поглощаемой плиты. С этой стороны находятся глубоководный желоб и преддуговый прогиб.

За островной дугой расположен задуговый бассейн (типичные примеры: Охотское море , Южно-Китайское море и т.д.) в котором также может происходить спрединг.

Коллизия континентов

Столкновение континентов

Подробнее в статье Коллизия континентов

Столкновение континентальных плит приводит к смятию коры и образованию горных цепей. Примером коллизии является Альпийско-Гималайский горный пояс , образовавшийся в результате закрытия океана Тетис и столкновения с Евразийской плитой Индостана и Африки . В результате мощность коры значительно увеличивается, под Гималаями она составляет 70 км. Это неустойчивая структура, она интенсивно разрушается поверхностной и тектонической эрозией . В коре с резко увеличенной мощностью идёт выплавка гранитов из метаморфизованных осадочных и магматических пород. Так образовались крупнейшие батолиты , напр., Ангаро-Витимский и Зерендинский .

Трансформные границы

Там, где плиты двигаются параллельным курсом, но с разной скоростью, возникают трансформные разломы - грандиозные сдвиговые нарушения, широко распространённые в океанах и редкие на континентах.

Трансформные разломы

Подробнее в статье Трансформный разлом

В океанах трансформные разломы идут перпендикулярно срединно-океаническим хребтам (СОХ) и разбивают их на сегменты шириной в среднем 400 км. Между сегментами хребта находится активная часть трансформного разлома. На этом участке постоянно происходят землетрясения и горообразование, вокруг разлома формируются многочисленные оперяющие структуры - надвиги, складки и грабены. В результате, в зоне разлома нередко обнажаются мантийные породы.

По обе стороны от сегментов СОХ находятся неактивные части трансформных разломов. Активных движений в них не происходит, но они чётко выражены в рельефе дна океанов линейными поднятиями с центральной депрессией. .

Трансформные разломы формируют закономерную сетку и, очевидно, возникают не случайно, а в силу объективных физических причин. Совокупность данных численного моделирования, теплофизических экспериментов и геофизических наблюдений позволила выяснить, что мантийная конвекция имеет трёхмерную структуру. Кроме основного течения от СОХ, в конвективной ячейке за счёт остывания верхней части потока, возникают продольные течения. Это остывшее вещество устремляется вниз вдоль основного направления течения мантии. В зонах этого второстепенного опускающегося потока и находятся трансформные разломы. Такая модель хорошо согласуется с данными о тепловом потоке: над трансформными разломами наблюдается его понижение.

Сдвиги на континентах

Подробнее в статье Сдвиг

Сдвиговые границы плит на континентах встречаются относительно редко. Пожалуй, единственным ныне активным примером границы такого типа является разлом Сан-Андреас , отделяющий Северо-Американскую плиту от Тихоокеанской . 800-мильный разлом Сан-Андреас - один из самых сейсмоактивных районов планеты: в год плиты смещаются относительно друг друга на 0,6 см, землетрясения с магнитудой более 6 единиц происходят в среднем раз в 22 года. Город Сан-Франциско и большая часть района бухты Сан-Франциско построены в непосредственной близости от этого разлома.

Внутриплитные процессы

Первые формулировки тектоники плит утверждали, что вулканизм и сейсмические явления сосредоточены по границам плит, но вскоре стало ясно, что и внутри плит идут специфические тектонические и магматические процессы, которые также были интерпретированы в рамках этой теории. Среди внутриплитных процессов особое место заняли явления долговременного базальтового магматизма в некоторых районах, так называемые горячие точки.

Горячие точки

На дне океанов расположены многочисленные вулканические острова. Некоторые из них расположены в цепочках с последовательно изменяющимся возрастом. Классическим примером такой подводной гряды стал Гавайский подводный хребет . Он поднимается над поверхностью океана в виде Гавайских островов , от которых на северо-запад идёт цепочка подводных гор с непрерывно увеличивающимся возрастом, некоторые из которых, напр., атолл Мидуэй , выходят на поверхность. На расстоянии порядка 3000 км от Гавайев цепь немного поворачивает на север, и называется уже Императорским хребтом . Он прерывается в глубоководном желобе перед Алеутской островной дугой .

Для объяснения этой удивительной структуры было сделано предположение, что под Гавайскими островами находится горячая точка - место, где к поверхности поднимается горячий мантийный поток, который проплавляет двигающуюся над ним океаническую кору. Таких точек сейчас на Земле установлено множество. Мантийный поток, который их вызывает, был назван плюмом . В некоторых случаях предполагается исключительно глубокое происхождение вещества плюмов, вплоть до границы ядро - мантия.

Траппы и океанические плато

Кроме долговременных горячих точек, внутри плит иногда происходят грандиозные излияния расплавов, которые на континентах формируют траппы , а в океанах океанические плато . Особенность этого типа магматизма в том, что он происходит за короткое в геологическом смысле время порядка нескольких миллионов лет, но захватывает огромные площади (десятки тысяч км²) и изливается колоссальный объём базальтов, сравнимый с их количеством, кристаллизующимся в срединно-океанических хребтах.

Известны сибирские траппы на Восточно-Сибирской платформе , траппы плоскогорья Декан на Индостанском континенте и многие другие. Причиной образования траппов также считаются горячие мантийные потоки, но в отличии от горячих точек они действуют кратковременно, и разница между ними не совсем ясна.

Горячие точки и траппы дали основания для создания так называемой плюмовой геотектоники , которая утверждает, что значительную роль в геодинамических процессах играет не только регулярная конвекция, но и плюмы. Плюмовая тектоника не противоречит тектонике плит, а дополняет её.

Тектоника плит как система наук

Карта тектонических плит

Сейчас тектонику уже нельзя рассматривать как чисто геологическую концепцию. Она играет ключевую роль во всех науках о Земле, в ней выделилось несколько методических подходов с разными базовыми понятиями и принципами.

С точки зрения кинематического подхода , движения плит можно описать геометрическими законами перемещения фигур на сфере . Земля рассматривается как мозаика плит разного размера, перемещающихся относительно друг друга и самой планеты. Палеомагнитные данные позволяют восстановить положение магнитного полюса относительно каждой плиты на разные моменты времени. Обобщение данных по разным плитам привело к реконструкции всей последовательности относительных перемещений плит. Объединения этих данных с информацией, полученной из неподвижных горячих точек, сделало возможным определить абсолютные перемещения плит и историю движения магнитных полюсов Земли.

Теплофизический подход рассматривает Землю как тепловую машину , в которой тепловая энергия частично превращается в механическую. В рамках этого подхода движение вещества во внутренних слоях Земли моделируется как поток вязкой жидкости, описываемый уравнениями Навье-Стокса . Мантийная конвекция сопровождается фазовыми переходами и химическими реакциями, которые играют определяющую роль в структуре мантийных течений. Основываясь на данных геофизического зондирования, результатах теплофизических экспериментов и аналитических и численных расчётах, учёные пытаются детализировать структуру мантийной конвекции, найти скорости потоков и другие важные характеристики глубинных процессов. Особенно важны эти данные для понимания строения самых глубоких частей Земли - нижней мантии и ядра, которые недоступны для непосредственного изучения, но, несомненно, оказывают огромное влияние на процессы, идущие на поверхности планеты.

Геохимический подход . Для геохимии тектоника плит важна как механизм непрерывного обмена веществом и энергией между различными оболочками Земли. Для каждой геодинамической обстановки характерны специфические ассоциации горных пород. В свою очередь, по этим характерным особенностям можно определить геодинамическую обстановку, в которой образовалась порода.

Исторический подход . В смысле истории планеты Земля, тектоника плит - это история соединяющихся и раскалывающихся континентов, рождения и угасания вулканических цепей, появления и закрытии океанов и морей. Сейчас для крупных блоков коры история перемешений установлена с большой детальностью и за значительный промежуток времени, но для небольших плит методические трудности много большие. Самые сложные геодинамические процассы происходят в зонах столкновения плит, где образуются горные цепи, сложенные множеством мелких разнородных блоков - террейнов, проведённые в 1999 космической станцией протерозое . До этого мантия, возможно, имела иную структуру массопереноса, в которой большую роль играли не установившиеся конвективные потоки, а турбулентная конвекция и плюмы .

Прошлые перемещения плит

Подробнее в статье История перемещения плит

Восстановление прошлых перемещений плит - один из основных предметов геологических исследований. С различной степенью детальности положение континентов и блоков, из которых они сформировались, реконструировано вплоть до архея.

Движется на север и сминает Евразийскую плиту, но, видимо, ресурс этого движения уже почти исчерпан, и в скором геологическом времени в Индийском океане возникнет новая зона субдукции, в которой океаническая кора Индийского океана будет поглощаться под Индийский континент.

Влияние перемещений плит на климат

Расположение больших континентальных массивов в приполярных областях способствует общему понижению температуры планеты, так как на континентах могут образовываться покровные оледенения . Чем шире развито оледенение, тем больше альбедо планеты и тем ниже среднегодовая температура.

Кроме того, взаимное расположение континентов определяет океаническую и атмосферную циркуляцию.

Однако простая и логичная схема: континенты в приполярных областях - оледенение, континенты в экваториальных областях - повышение температуры, оказывается неверной при сопоставлении с геологическими данными о прошлом Земли. Четвертичное оледенение действительно произошло, когда в районе Южного полюса оказалась Антарктида , и в северном полушарии Евразия и Северная Америка приблизились к Северному полюсу. С другой стороны, сильнейшее протерозойское оледенение , во время которого Земля оказалась почти полностью покрыта льдом, произошло тогда, когда большая часть континентальных массивов находилась в экваториальной области.

Кроме того, существенные изменения положения континентов происходят за время порядка десятков миллионов лет, в то время как, суммарная продолжительность ледниковых эпох составляет порядка нескольких миллионов лет, и во время одной ледниковой эпохи происходят циклические смены оледенений и межледниковых периодов. Все эти климатические изменения происходят быстро по сравнению со скоростями перемещения континентов, и поэтому движение плит не может быть их причиной.

Из вышесказанного следует, что перемещения плит не играют определяющей роли в климатических изменениях, но могут быть важным дополнительным фактором, «подталкивающим» их.

Значение тектоники плит

Тектоника плит сыграла в науках о Земле роль, сравнимую с гелиоцентрической концепцией в астрономии, или открытием ДНК в генетике. До принятия теории тектоники плит, науки о Земле носили описательный характер. Они достигли высокого уровня совершенства в описании природных объектов, но редко могли объяснить причины процессов. В разных разделах геологии могли доминировать противоположные концепции. Тектоника плит связала различные науки о Земле, дала им предсказательную силу.

В. Е. Хаин. over smaller regions and smaller time scales.