Тип системы заземления tn. Система заземления TT. Традиционная технология и материалы

), в электрических сетях до 1 кВ используются следующие системы:

1. Система TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников. Подразделяется на следующие подсистемы:

1.1. подсистема TN-С – система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении;

1.2. подсистема TN-S – система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении;

1.3. подсистема TN-C-S – система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания;

2. Система IT – система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;

3. Система ТТ – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Буквенное обозначение

В обозначениях систем принято:

Первая буква – состояние нейтрали источника питания относительно земли:

Т (terra – земля) – заземленная нейтраль;

I (isolate – изолированный) – изолированная нейтраль.

Вторая буква – состояние открытых проводящих частей относительно земли:

Т – открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N (neutral – нейтральный) – открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после N) буквы – совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

S (selective – разделенный) – нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;

С (complete – общий) – функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник);

Принято следующее буквенное обозначение нулевых проводников:

N – нулевой рабочий (нейтральный) проводник;

РЕ (protecte eath – защитная земля) – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PEN – совмещенный нулевой защитный и нулевой рабочий проводники.

Область применения

Система TN должна, как правило, применяться в электроустановках напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок.

Систему IT следует выполнять, как правило, в электроустановках напряжением до 1 кВ при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части.

Система ТТ допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены.


Проверьте, насколько хорошо Вы изучили вопрос "Типы систем заземления электроустановок", ответив на несколько контрольных вопросов.

В распределительных электрических сетях российского жилого фонда на протяжении нескольких десятилетий устаревшая система заземления TN-C стала массово заменяться на более современную (и гораздо более безопасную) TN-C-S. По сути последняя из них представляет собой симбиоз систем TN-C и TN-S и отличается от прочих такой конструктивной особенностью, как парное «расщепление» PEN-проводника, осуществляемое на участке разветвления общей распределительной сети на отдельные, идущие к потребителям. В результате, образуется 2 проводника:

  • РЕ (защитный);
  • N (рабочий нулевой).

При этом схема электроснабжения с такой системой заземления в распределительном подъездном щитке принимает следующий вид:

При использовании однофазного питания (и соответствующем счетчике, установленном внутри коробки щитка) на внутренний квартирный щиток уходит 3-жильный кабель (соответственно с фазой С, защитным проводником РЕ и рабочим нулевым проводником N) – на схеме обозначенный красной, голубой и салатовой линиями.
При наличии трехфазного питания (и счетчика) используется уже 5-жильный кабель, в котором добавляется пара проводов А (обозначен желтым цветом) и В (темно-зеленый цвет).

Таким образом, в отличие от «совдеповской» TN-C системы, TN-C-S предполагает использование еще и не устаревших, а новых евророзеток, обязательно снабжаемых внутренними клеммами заземления.

Что касается упоминавшегося «расщепления» одного проводника на пару, то рабочий (N) по-прежнему служит для выполнения основной функции – подачи на различные устройства потребителя электропитания. В то же время дополнительный, защитный РЕ замыкается на корпуса электроприборов и бытовой техники (посудомоечных и стиральных машин, электрических плит, микроволновых печей и т.д.).

Однако где именно разделять общий РЕ-N проводник? Вопрос этот не праздный, и потому требует отдельного тщательного рассмотрения с пояснениями.

Разделение PEN проводника в системе TN-C-S

На входе электросети общего пользования с улицы в крупные здания обязательно устанавливается ВРУ (вводно-распределительное устройство). Конструктивно оно выглядит примерно следующим образом:

Как видно из рисунка, стандартный ВРУ (в данном случае – 0,4кВ) содержит совокупность:

  • различного защитного оборудования ( , автовыключателей, предохранителей и пр.);
  • электрооборудования преобразовательного и передаточного назначения (трансформаторов, рубильников, сборных шин и др.);
  • электронных приборов измерения и учета (счетчиков, вольтметров, амперметров и т.д.),компактно закрепленных внутри металлического шкафа. Именно в нем целесообразно провести и разделение общего проводника на их пару PE и N.

При этом общая наглядная картина при использовании системы TN-C-S примет следующий вид:

А поскольку проводник будет разделяться внутри ВРУ, схематически это будет выполнено так, как показано на фото ниже:

Для разделения потребуется использовать две соответствующие шины:

  • нижнюю, идущую на «землю», т.е. PE;
  • и верхнюю, защитную, т.е. N, установленную на изоляторах.

Вводный кабель (с общим проводником) будет запитан на шину заземления. Та же, в свою очередь, будет соединена с верхней шиной жесткой перемычкой (по возможности изготовленной из того же материала и примерно такой же ширины, как и обе шины, либо выполненной в виде провода, сечением равному проводнику PEN).

Тогда схема соединения примет следующий внешний вид:

Кроме того, нижнюю шину, РЕ, потребуется заземлить повторно – иначе говоря, вывести на заземляющий контур самого здания.

Важно! Электротехнические размерные параметры проводника, идущего к месту его разделения, могут быть различными, но в сечении, ни в коем случае, не падать нижней предельной нормы:для медного провода – не менее 10 мм2; для алюминиевого – не менее 10 мм2.

При этом все вышеперечисленное является не просто рекомендациями, а прямыми требованиями ПУЭ.

Достоинства системы заземления TN-C-S

Следует отметить, что система TN-C-S в электросетях России на сегодня является не только наиболее распространенной, но и, пожалуй, самой перспективной. Благодаря использованию УЗО (устройств, обеспечивающих автоматическое защитное отключение), ее уровень безопасности гораздо более высок, чем все еще во множестве оставшихся (в основном в «хрущевках» и «брежневках») старых систем TN-C, хотя и ниже, чем у современных TN-S.

Однако именно возможность легко и без лишних финансовых и временных затрат осуществить симбиоз устаревших и передовых систем заземления в единое целое и позволяет отнести ее к оптимальным на данный момент для нашего государства.

  1. TN-C – отличается отсутствием разделения защитного и рабочего проводников по всей протяженности системы. Это делает ее максимально простой и экономичной – но в определенных ситуациях принужденной к короткому замыканию и отключению питания. При этом следует помнить, что, скажем, в ванных комнатах выравнивание потенциалов не допускается в принципе.
  2. TN-C-S – как уже было подробно описано выше – лишена этого недостатка. При этом переход на нее с TN-C очень прост (и сложность заключается разве что в необходимости модернизировать расположенный в каждом подъезде стояк).
  3. Наконец, TN-S – благодаря изначально полному разделению защитных и рабочих «нулевок» — устанавливается во всем мире в новом жилом фонде из-за максимальной степени безопасности. Однако система эта достаточно дорога – и именно поэтому для установки в зданиях старой постройки проигрывает «промежуточной» TN-C-S.

Недостатки системы TN-C-S

Фактически, он всего один – и состоит в в том случае, если PEN-проводник вследствие каких-либо форс-мажорных обстоятельств оборвется, и корпуса электроприборов окажутся под напряжением.

Вывод

Несмотря на «отсутствие совершенства» системы TN-C-S, переход в зданиях с абсолютно устаревшим заземлением типа TN-C на нее более чем рекомендуется.

Похожие материалы.

Для подавляющего большинства «электрифицированной» части населения планеты слово заземление вызывает в памяти две картины: или вкопанный в землю металлический штырь, к которому присоединен спускающийся от расположенного на крыше молниеприемника провод, или два металлических «язычка» в так называемой «евророзетке». Такая «осведомленность» приводит к довольно распространенной ситуации, когда не найдя в электропроводке квартиры третьего провода для присоединения к заземляющим контактам розетки, умельцы соединяют их дополнительным проводом с трубами водопровода или отопления.

Логика подобных действий основана на прочно укоренившемся убеждении, что раз эти трубы уходят под землю, значит они должны иметь с ней электрический контакт. Когда-то, во времена СССР так оно и было, но сегодня, когда пластиковые диэлектрические трубы стали повседневностью, такое «заземление» будет представлять опасность для людей во всех помещениях, через которые проходит заизолированный пластиковой вставкой участок трубы. Если теперь на «заземленной» таким способом стиральной машине случится электропробой на корпус, то в квартире по соседству между трубой канализации и водопроводным краном возникнет разность потенциалов.

Представьте теперь ощущения соседа, который принимая ванну, дотронется до крана и через его тело потечет электрический ток! Учитывая низкое сопротивление мокрой кожи, подобная ситуация может иметь трагические последствия. А ведь правильно обустроенное заземление – это наша основная защита от поражения током при пробое на корпус электрооборудоания или повреждении изоляции.

Чтобы избежать неприятностей, кратко рассмотрим, как организовано заземление при электроснабжении здания путем подключения к трансформаторной подстанции (ТП) и где правильно искать третий провод для разъемного полюса заземления трехполюсной розетки.

Организация собственной системы заземления ТП и идущих к потребителю проводников определяет тип системы заземления в подключенных к этой ТП зданиях. Не вдаваясь в технические подробности, укажем, что общая точка соединенных обмоток трансформатора называется нейтралью или нулевой точкой (поскольку при нормальных условиях нагрузки ее потенциал равен нулю).

Подсоединенная к собственной системе заземления подстанции нейтраль является глухозаземленной и в аббревиатуре типа заземления обозначается стоящей на первом месте буквой Т (Тerra - земля). Если нейтраль изолирована (подключена к системе заземления через высокое сопротивление), то на первом месте будет буква І (Isole).

В свою очередь, заземление открытых проводящих частей потребителей, то есть расположенных в доме электроустановок и электроприборов, может осуществляться или через ту же, организованную на ТП, систему заземления через проводник (вторая буква N (Neutre - нулевой) в аббревиатуре), или при помощи собственного электрически независимого от заземления нейтрали контура заземления (вторая буква – Т). Сочетание этих вариантов дает нам три типа заземления при централизованном электроснабжении TN, ТТ и ІТ.

Для низковольтных (до 1000 В) линий электроснабжения основной является система заземления типа TN, которая подразделяется на три подтипа. В любом случае для электроснабжения потребителей от ТП прокладывают кабеля фазных проводников (L) и нулевой рабочий проводник (N). И по фазным и по нулевому рабочему проводникам протекает электроток, только первые имеют относительно земли опасный для жизни потенциал, а второй заземляется на подстанции. В комплекте с ними также идет нулевой защитный проводник (PE - Protective Earthing). От технической реализации исполнения функций обоих нулевых проводников имеем TN системы:

СИСТЕМА TN-C

На территории СНГ в построенных до начала нынешнего ХХІ века повсеместно многоквартирных домах использовалась система TN-C.

В этом случае оба нулевых проводника защитный и рабочий по всей длине объединяли в один изолированный провод РЕN (Combine – объединять) и подводили к вводно-распределительному устройству (ВРУ) здания.

При такой схеме в домах однофазная проводка имеет два, а трехфазная четыре провода и заземляющий контакт в евророзетке присоединить не к чему. Заземление этого типа часто называют занулением.

К достоинствам TN-C заземления можно отнести простоту и дешевизну по сравнению с другими системами. Действует при этом только защита от сверхтоков (автоматические выключатели), а устройства защитного отключения (УЗО) при таком типе заземления неработоспособны.

В случае однофазного короткого замыкания токи могут достигать несколько килоампер приводя к возгоранию проводки, поэтому у такой электросети низкая пожаробезопасность. Но наибольшую опасность при системе заземления этого типа представляет появление на корпусах электрооборудования фазного напряжения при обрыве РЕN проводника (так называемое отгорание нуля).

Это случается все чаще, поскольку проводка прокладывались, ориентируясь на норматив потребляемой мощности не более 1100 Вт на квартиру, значение которой в реалиях сегодняшнего дня превышается в несколько раз (электрочайник + телевизор + холодильник + компьютер + настольная лампа + освещение уже дает по минимуму 2 кВт).

Кроме этого, имеющие на входе симметричный фильтр импульсных помех с присоединенной к корпусу средней точкой, импульсные блоки питания современной электронной техники способствуют выносу на корпус напряжения в 110 В. Все это способствовало запрету в действующей редакции «Правил устройства электроустановок» применения системы заземления TN-C в новых постройках.

СИСТЕМА TN-S

Система TN-S - вариант заземления, когда на всем пути от источника питания до потребителя нулевые проводники разделены, то есть от ТП до розеток в квартире прокладываются два разных провода - рабочий ноль N и защитный ноль РЕ (Separe - разделять).

В сетях этого типа в случае пробоя на корпус, как и при TN-C системе заземления, также возникает опасное для жизни напряжение.

Но возможность использования УЗО (при пробое на корпус ток будет течь к защитному нулю РЕ, приводя к срабатыванию УЗО) делает на сегодня систему TN-S наиболее безопасной.

Разделение нулевых проводников также предотвращает возникновение высокочастотных наводок и других помех, что важно для работы чувствительной к ним электроники.

Обрыв рабочего нуля N в подобной системе заземления не приводит к появлению фазного напряжения на корпусах подключенного к линии электроснабжения оборудования. Основной «проблемой» при использовании системы TN-S, которая на данный момент повсеместно используется только в Великобритании, является ее стоимость, поскольку от ТП до потребителя необходимо прокладывать дополнительный кабель.

СИСТЕМА TN-C-S

Стремление повысить безопасность TN-C системы заземления и при этом не понести многомиллионных затрат привело к появлению гибрида TN-C + TN-S, когда от ТП до ВРУ здания или до ближайшей опоры идет общий РЕN, а после разделяется на два отдельных провода N и PE с обязательным повторным заземлением. Обозначается такая организация заземления как TN-C-S.

И если на постсоветском пространстве модернизацию системы TN-C начали относительно недавно, то в таких странах, как США, Швеция и Финляндия, Польша, Венгрия, Чехия и Словакия, Великобритания, Швейцария, Германия занялись этим еще в 1960-е годы. В этом случае в домах однофазная проводка имеет три, а трехфазная пять проводов.

Как правило, в квартиру заводится розеточная группа (L, N и PE), группа на электроплиту (L, N и PE) и группа освещения (L, N). То есть к розетке идут три провода и уже есть к чему присоединить заземляющий контакт. Возможность применения УЗО на участке TN-S обеспечивает высокий уровень защиты при утечках тока.

Но на участке TN-C сохраняется опасность отгорания нуля, в результате чего на PE появится фазное напряжение. Для защиты от этой неприятности предназначена дополнительная система уравнивания потенциалов, но при реконструкции системы электроснабжения в старых домах у нас ее практически никогда не делают.

При желании самостоятельно организовать в квартире систему заземления TN-C-S и при этом существенно сэкономить нередко возникает желание разделить РЕN проводник прямо в розеточной коробке, подсоединив один конец к рабочему полюсу розетки, а другой – заземляющему контакту.

Опасность этого варианта в том, что на заземляющем контакте и, соответственно, на корпусе включенного в розетку оборудования появится фазный потенциал в двух случаях, вероятность которых довольно высока: 1) обрыве РЕN проводника, который в этом случае включает квартирную проводку вплоть до розетки; 2) перестановка идущих к этой розетке нулевого и фазного проводника.

В домах старой постройки осуществляют также попытки организовать TN-C-S путем разделения РЕN не на ВРУ, а в этажном щите, прокладывая дополнительный провод. При этом, поскольку согласно требованиям ПУЭ запрещено подключать рабочий и защитный нулевые проводники под общий контактный зажим, их подключают к разным зажимам нулевой шины в щите.

Фазный потенциал на корпусе подключенного оборудования может появиться в тех же случаях, что описаны выше, но вероятность отгорания нуля уменьшается. В домах постройки 1980-х подобная схема разделения PEN в электрощите рядом со счетчиком применялась при установке электроплит и защитный РЕ провод прокладывался только для плиты.

Применяться эта схема стала еще с 40-ых годов 20-го века. Впервые она была применена в европейских странах, где и используется до сих пор. У нас, в России, сейчас стоит точно такая же задача. Задача эта состоит вот в чем: проектируя и выполняя монтаж проводки на новых объектах в однофазных сетях, требуется применять кабельные линии, имеющие три жилы (фазная, нейтральная и жила PE), для сетей же, имеющих три фазы, такой кабель должен иметь пять рабочих жил (фазы А, В, С, нейтраль и PE). Все это должно начинаться от источника энергии вплоть до самой последней розетки потребителя. Иными словами, у такой системы заземления имеется два нейтральных провода (рабочая и защитная).

Такие требования не являются пустым звуком: подобные рекомендации, предписывающие переход от заземления по схеме TN-C на систему TN-S, или TN-C-S, обусловлены общеизвестным документом, именуемым ПУЭ (в пункте 1.7.132). Быстрый переход на эту систему невозможен по причине большой затратности и дороговизны такой системы.

Преимущества

Вот какие плюсы имеет данная схема заземления:

  1. Нет надобности контролировать состояние заземляющего контура;
  2. Значительно более высокая надежность и безопасность системы по сравнению с другими;
  3. Эта система позволяет использовать и дифавтоматы с целью повышения защищенности;
  4. Такая система практически полностью исключает появление наводок высокой частоты на потребительские силовые линии.

Недостаток ее только один – большая стоимость при переделке.

Попытаюсь подоходчивей объяснить замечательность этого перехода. Для того, чтобы это выяснить, надо рассмотреть его электросхему. Она схожа с традиционным вариантом электроснабжения, в котором, кроме фазных проводов, имеется и провод нуля, с той огромной разницей, что для него не нужно дополнительное заземление ни на «N»-линии, ни на «PE»-линии, а выполняется она лишь на первом источнике тока. Все это дает возможность выполнения разделения рабочих функций и функций защиты по разным питающим шинам. Подобная схема становится очень актуальной при полном отсутствии контроля состояния контуров защитного заземления.

Такая система стала главной рабочей заземляющей системой, применимой к зданиям, содержащим информационное и телекоммуникационное оборудование. В этой системе обеспечено полное отсутствие обратных токов РЕ-проводника , а это значительно уменьшает возможность возникновения помех электромагнитного типа. Во время эксплуатации системы, нужно, лишь, следить за тем, чтобы соблюдалась принадлежность проводов РЕ и N. Для максимального снижения помех, лучше всего, иметь встроенную (либо пристроенную) ТП.

Зданиям, в которых имеется, либо возможна установка значительного числа оборудования, обрабатывающего информацию или любого другого оборудования, которое чувствительно к помехам, требуется особенный контроль проводов защиты и проводов рабочего нуля от точки подачи питания для предотвращения, либо сведения к минимуму воздействий электромагнитного типа. Проводники эти ни в коем случае не подлежат объединению, иначе, нагрузочный ток, в особенности сверхток, что возникает во время однофазного КЗ, пойдет кроме нулевого рабочего провода, по защитному нулю и приведет к помехам.

Наконец, есть смысл рассказать об . Дело в том, что соединение оборудования с заземлителями обеспечивают именно они. Если требуется заземление непосредственного типа, то оно монтируется под специальную гайку. В розетке же, такое соединение происходит через специальные «заземляющие ножи». Розетки евростандарта от старых «совдеповских» отличны по диаметру гнезда и наличием специальных «ножей заземления».

Вывод

Отсюда мы видим, что такая система организации заземления значительно более надежна, нежели другие. Именно по этой причине в России стоит вопрос о постепенном переходе именно на эту схему заземления. Надеюсь, я достаточно доходчиво разъяснил суть и принципы заземляющей системы TN-S и ни у кого не возникнет вопросов по ее полезности, безопасности и необходимости перехода на нее всей России.

Заземление – тема насколько сложная, настолько и простая. Недаром вопросы заземления вызывают множество споров на электрических сайтах и форумах.

Попробуем разобраться, что к чему в этой теме. Выскажу своё мнение, которое иногда будет непопулярным. Кому нужна официальная трактовка – читайте ПУЭ (пункт 1.7). Также в интернете много сайтов и форумов, где подробно изложен вопрос заземления.

Суть заземления

Для чего нужно заземление, если и без него всё прекрасно работает? Более того, в нормальном режиме по проводу защитного заземления ток вообще не протекает.

Тут ключевое слово – “защитное”. Кого и от чего защищает заземление? Оно защищает человеческие тела от воздействия электрического тока. А от чего защищает – от того, чтобы опасное напряжение ни в коем случае не появилось на теле человека, и через человека не пошёл ток.

Представим ситуацию. Есть некий электрический прибор, например утюг. Утюг подключается через вот такую вилку.

Читатели постарше отлично помнят такие, они постоянно раскручивались, а прикрутить к ним гибкий провод было мучением.

Корпус утюга частично металлический. Что будет, если вдруг фаза попадет на корпус? В принципе ничего, утюг даже может продолжать работать. Но его корпус будет находиться под потенциалом 220В относительно земли. А поскольку все мы ходим по земле, то притронувшись к металлическому корпусу такого утюга, через нас пойдёт ток.

Но если корпус утюга будет заземлён, то когда фазный провод попадёт на корпус, он соединится с заземлением, и уйдёт в землю. При этом произойдёт фактически короткое замыкание, и выбьет защитный автомат данной линии. А корпус как был под нулевым потенциалом, так и останется.

Иными словами, если фаза вдруг попадёт на корпус прибора, это уже не проблема человека. Это проблема самого прибора и защитного автомата, который должен отключить этот прибор от фазного провода.

Почему защитный автомат отключится? Если фазный провод попадает на защитный (заземляющий) проводник, это равносильно короткому замыканию, то есть максимально возможному току в схеме. И автомат сработает по электромагнитной защите.

То есть, ток в проводе защитного заземления течёт только в момент аварии, в остальное время он бесполезен. Поэтому раньше на нём экономили, и использовали двухпроводную систему питания, в которой есть только ноль и фаза.

Обозначения и перевод названий систем заземления

Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Буквы эти взялись из французского, и означают: «Terre» - земля, «Neuter» - нейтраль, «Isole» - изолировать, а также из английского: «Combined» и «Separated» – комбинированный и раздельный.

  • T - провод подключен к земле.
  • N - подключение к нейтрали.
  • I - изолирование.
  • C - объединение функций, соединение рабочего и защитного нулевых проводов.
  • S - раздельное использование во всей сети рабочего и защитного нулевых проводов.

Также в схемах систем заземления используются следующие обозначения:

  • L – Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу.
  • N – Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
  • PE – Protect Earth, защитная земля, провод защитного заземления.
  • PEN – совмещенный рабочий и защитный нулевой проводник.

Краткое описание работы систем заземления

Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.

Возникает путаница в терминологией – одну и ту же систему называю и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе – заземлён. Заземляется для того, чтобы не было перекоса фаз.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Подробнее о перекосе фаз, чем он опасен, и как с ним бороться – .

ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.

Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один – заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.

Вообще, заземление это более широкое понятие, чем зануление.

Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем – электрочайник, квартиру, многоэтажный дом, или район города?

Ну а если фаза “прорвётся” на корпус – её должен уничтожить защитный автомат со 100% вероятностью.

Тут важными считаю две вещи:

  1. Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это – “самый нулевой” потенциал.
  2. Опасное – недоступно. Доступное – безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.

И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение.

В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновении к фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.

Схемы систем заземления

Система TN-C

TN-C – старая, советская система, когда земля просто бралась из нуля непосредственно в самой электроустановке.

Что мы видим на этой схеме? Первое и самое главное. Нейтральная точка генератора или трансформатора подключена к земле (глухо заземлена). Поэтому нейтральная точка трансформатора имеет потенциал земли. А поскольку человек имеет тоже потенциал земли, между телом и нейтральным проводником – нулевая разность потенциалов, и прикосновение к нему безопасно.

Однако, не всё так просто. Повторюсь, что вследствие перекоса фаз, а также падения напряжения на проводе PEN, на нём может присутствовать напряжение, отличное от нулевого. Поэтому провод PEN принудительно “притягивают” к земляному потенциалу через некоторые промежутки по ходу линии.

Земля (то, из чего состоит наша планета) – универсальный и абсолютный ноль по потенциалу. Но если человеку придать потенциал фазного провода, то прикосновение к земле будет смертельно. В то же время, прикосновение к проводу, на котором тот же потенциал, будет безопасным.

Видел документальный фильм, как человек спокойно спускается с вертолета на провод высоковольтной линии и работает там.

В общем всё относительно. Можно упасть с 5-этажного дома насмерть. А можно вообще не повредиться, упав с того же дома. С первой ступеньки первого этажа)

Система TN-C в настоящее время официально запрещена , и может использоваться только в трехфазных системах, где отсутствует перекос фаз, и ток по проводнику PEN (нулевой, он же защитный) в нормальном режиме не протекает. В результате, на этом проводе (а значит, и на корпусе прибора) будет потенциал нуля.

Однако, в старом жилом фонде используется повсеместно из-за своей дешевизны. Дешевизна системы TN-C – это её единственный плюс. Ведь сечение защитного провода PE в однофазной сети должно быть равно сечению фазного провода. А это – удорожание всей электропроводки минимум на треть.

Вообще говоря, в этой системе заземление напрочь отсутствует, и я не совсем понимаю, почему “это” называют системой заземления. Разве что, можно ноль кинуть на корпус, и прибор будет “типа” заземлён.

Да и раньше, когда всю проводку делали по этой системе, практически и не существовало домашних приборов, требующих заземления.

Первыми “ласточками” были стиральные машины, которые бились током. В лучшем случае к ним тянули провод от корпуса подъездного щитка, в худшем – цепляли корпус машины на трубу водопровода или к нулевому проводу.

Нужный эффект, конечно, достигается, но шансы попасть под фазное напряжение значительно возрастают. Основная опасность приходит от того, что возможен обрыв нулевого провода, и тогда все “зануленные” приборы, и также приборы, имеющие импульсные блоки питания, получат на корпусах потенциал фазы.

Как же защититься от поражения электрическим током в системе TN-C? Тут вспоминается УЗО (Устройство Защитного Отключения). Представим – человек коснулся фазного провода. Ток раздваивается – часть (надеюсь, бОльшая) уходит в нулевой проводник, а часть – через тело человека на корпус. Налицо дифференциальная разница (сорри, тавтология) в токах по фазе и нулю, на которую должно сработать УЗО.

Однако, ПУЭ прямо говорит – в системе TN-C применение УЗО запрещено . Почему?

Причина в том, что в данном случае может произойти то, о чем я писал выше. УЗО – это коммутационный аппарат, в котором может по какой-то причине нарушиться контакт PEN – проводника, и под фазное напряжение попадёт весь потребитель. В том числе и корпуса, если они занулены, а именно так и делается “заземление” в системе TN-C.

ПУЭ также говорит, что защитный проводник (в данном случае – PEN) ни при каких условиях не должен разрываться , и должен быть всегда подключен к заземляемому устройству.

Поэтому УЗО можно (и нужно!) применять во всех системах, кроме TN-C .

Вот хороший рисунок, иллюстрирующий ситуацию:

УЗО – применение в различных системах заземления

Я вас так напугал, что по любому возникнет вопрос – как теперь с этим жить?

Отвечаю. Для ухода от этой “нехорошей” системы применяют разделение проводника PEN на N и PE. Причем, это нужно делать как можно дальше от потребителя, и как можно ближе к источнику напряжения.

Таким образом, мы перейдём на гораздо более безопасную систему – TN-C-S , о которой я расскажу чуть ниже.

На практике совмещенный проводник PEN заземляют (повторное заземление) на вводе в здание, и там же разделяют на нейтральный N и защитный PE, которые далее НИГДЕ не должны соединяться.

Другой вариант – переход к системе ТТ , в которой защитный проводник PE делается на основе контура заземления, и нигде не подключен к приходящему PEN. В данном случае PEN превращается в N, поскольку защитный ток ни к коем случает по нему течь не будет.

Заземление в квартире с проводкой TN-C

В квартирах ноль и землю разделять сложнее. По этому поводу постоянно ведутся жаркие споры среди электриков.

Я думаю, что тут есть два приемлемых варианта.

1. Ноль оставить как есть, а провод PE взять с магистрального PEN проводника. Пусть не с самого проводника, а с места, куда он подсоединяется к корпусу этажного щитка. Главное, чтобы наши N и PE были подключены в разных точках. PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата (если они есть) и счетчика. Кстати, так и делали в советские времена при подключении в квартирах электропечей.

2. Провести трехпроводную систему (L, N, PE), но PE никуда не подключать. В результате мы не вносим изменения в этажный щиток (кстати, это запрещено!), а все нетоковедущие части электроприборов, металлических конструкций, труб и т.д. мы подключаем к этому проводнику. И в пределах квартиры у нас благодать! Только важное замечание – на группы розеток должны стоять УЗО на случай попадания фазы на корпус в пределах квартиры.

Всё, теперь по-быстрому пробежимся по другим системам, там всё проще.

Система TN-S

В названии буква третья S. Это значит, что проводники N и PE разделены (Separated) на всём протяжении от подстанции до потребителя.

Эта система заземления наиболее безопасна и предпочтительна, однако применяется только в самых новых электроустановках. Ну а в основном в реалити сейчас применяют систему TN-C-S. То есть старую систему стараются приблизить к новой, отдаляя точку подключения N и PE от потребителя и приближая к источнику питания.

Система TN-С-S

Последние буквы в названии означают, что проводники N и PE после подстанции соединены (Connected) в один провод PEN, а потом, на вводе в здание, разделены.

При попадании фазы на корпус должен сработать защитный автомат по КЗ. При касании токоведущих частей должен сработать УЗО.

Система TT

Terra – Terra. Я уже писал в статье про эту систему, в ней заземляющий провод PE подключается к контуру заземления, и больше никуда. Применяется в основном в частных домах и временных постройках и электроустановках.

Всё замечательно, если также применяются УЗО от прикосновения к токонесущим частям и защитные автоматы от КЗ.

Но есть один минус. Если в других системах своё заземление делать не обязательно, понадеявшись на заземление на подстанции или на столбах, то в данном случае его придётся делать. И делать очень качественно, чтобы в случае замыкания КЗ на землю ток короткого замыкания был достаточен для срабатывания автомата защиты.

То есть возможен вариант, когда при КЗ на корпус потенциал корпуса останется близким к нулю, всё замечательно. Но при этом автомат защиты не выбьет, хотя через него (и через проводку дома) будет идти ток, близкий к максимальному! И проблема может подкрасться с другой стороны…

Система IT

Напоследок расскажу про специфическую систему заземления IT. Во всех других системах используются источники питания (трансформаторы) с глухозаземленной нейтралью. Иначе говоря, нулевой проводник на стороне источника заземлён.

Однако, в системе IT источник питания полностью изолирован от земли – и ноль, и (естественно)) фаза.

В результате по отношению к земле потенциал отсутствует. И при замыкании на землю ничего не произойдёт, ведь ток не потечёт, либо будет пренебрежимо мал.

Я встречал такие системы для питания управляющих цепей в серьезном промышленном оборудовании. Ещё эта система применяется в переносных генераторах и других источниках питания, а также в медицинских учреждениях. Если один из выводов такого источника не заземлить и подключить к нагрузке, он будет работать по системе IT.

Минус такой системы – при замыкании на землю она превратится в TN-C-S с плохим монтажом, и об этом даже можно не узнать, если не проконтролировать. И станет опасной.

Видео про заземление

Пожалуй, самое адекватное и понятное видео про заземление, которое я видел. Посмотрите, если кому показалось, что я пишу слишком скучно:

На этом заканчиваю тему, спасибо за терпение, жду мнений и вопросов в комментариях.