Микроэлементы, необходимые для развития растений. Макро, микроэлементы в питании растений

ЖЕЛЕЗО
Железо играет ведущую роль среди всех содержащихся в растениях тяжелых металлов.
Об этом свидетельствует уже тот факт, что оно содержится в тканях растений в количе-
ствах более значительных, чем другие металлы. Так содержание железа в листьях дос-
тигает сотых долей процента, за ним следует марганец, концентрация цинка выражается
уже в тысячных долях, а содержание меди не превышает десятитысячных процента .
Органические соединения, в состав которых входит железо, необходимы в биохи-
мических процессах, происходящих при дыхании и фотосинтезе. Это объясняется очень
высокой степенью их каталитических свойств. Неорганические соединения железа также
способны катализировать многие биохимические реакции, а в соединении с органиче-
скими веществами каталитические свойства железа возрастают во много раз.
Каталитическое действие железа связано с его способностью менять степень
окисления. Атом железа окисляется и восстанавливается сравнительно легко, поэтому
соединения железа являются переносчиками электронов в биохимических процессах. В
основе реакций, происходящих при дыхании растений лежит процесс переноса электро-
нов. Процесс этот осуществляется ферментами - дегидрогенезами и цитохромами, со-
держащими железо.
Железу принадлежит особая функция - непременное участие в биосинтезе хло-
рофилла. Поэтому любая причина, ограничивающая доступность железа для растений,
приводит к тяжелым заболеваниям, в частности к хлорозу.
При нарушении и ослаблении фотосинтеза и дыхания вследствие недостаточного
образования органических веществ, из которых строится организм растения, и дефицита
органических резервов, происходит общее расстройство обмена веществ. Поэтому при
остром недостатке железа неизбежно наступает гибель растений. У деревьев и кустар-
ников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти
белыми, постепенно усыхают.
МАРГАНЕЦ
Роль марганца в обмене веществ у растений сходна с функциями магния и желе-
за. Марганец активирует многочисленные ферменты, особенно при фосфоролировании.
Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на
многих процессах обмена веществ, в частности на синтезе углеводов и протеинов .
Признаки дефицита марганца у растений чаще всего наблюдаются на карбонат-
ных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН
выше 6,5.
Недостаток марганца становится заметным сначала на молодых листьях по более
светлой зеленой окраске или по обесцвечиванию (хлорозу). В отличие от железистого
хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зе-
леные или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением.
Признаки марганцевого голодания у двудольных такие же, как при недостатке железа,
только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме
того, очень быстро появляются бурые некротические пятна. Листья отмирают даже бы-
стрее, чем при недостатке железа.
Марганцевая недостаточность у растений обостряется при низкой температуре и
высокой влажности. Видимо, в связи с этим озимые хлеба наиболее чувствительны к его
недостатку ранней весной.
Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При не-
достатке марганца понижается синтез органических веществ, уменьшается содержание
хлорофилла в растениях, и они заболевают хлорозом.
Симптомы марганцевой недостаточности у растений проявляются чаще всего на
карбонатных, торфянистых и других почвах с высоким содержанием органического ве-
щества. Недостаток марганца у растений проявляется в появлении на листьях мелких
хлоротичных пятен, располагающихся между жилками, которые остаются зелеными. У
злаков хлоротичные пятна имеют вид удлиненных полосок, а у свеклы они располага-
ются мелкими пятнами по листовой пластинке. При марганцевом голодании отмечается
также слабое развитие корневой системы растений. Наиболее чувствительными культу-
рами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, кар-
тофель, яблоня, черешня и малина. У плодовых культур наряду с хлорозным заболева-
нием листьев отмечается слабая облиственность деревьев, более раннее, чем обычно
опадание листьев, а при сильном марганцевом голодании - засыхание и отмирание вер-
хушек веток.
Физиологическая роль марганца в растениях связана, прежде всего, с его уча-
стием в окислительно-восстановительных процессах, проходящих в живой клетке, он
входит в ряд ферментных систем и принимает участие в фотосинтезе, дыхании, угле-
водном и белковом обмене и т.п..
Изучение эффективности марганцевых удобрений на различных почвах Украины пока-
зали, что урожай сахарной свеклы и содержание в ней сахара на их фоне был выше, бо-
лее высоким был при этом и урожай зерновых .

ЦИНК
Все культурные растения по отношению к цинку делятся на 3 группы:
- очень чувствительные (кукуруза, лен, хмель, виноград, плодовые);
- средне чувствительные (соя, фасоль, кормовые бобовые, горох, сахарная свекла,
подсолнечник, клевер, лук, картофель, капуста, огурцы, ягодники);
- слабо чувствительные (овес, пшеница, ячмень, рожь, морковь, рис, люцерна).
Недостаток цинка для растений чаще всего наблюдается на песчаных и карбо-
натных почвах. .Мало доступного цинка на торфяниках, а также на некоторых мало-
плодородных почвах. Недостаток цинка сильнее всего сказывается на образовании се-
мян, чем на развитии вегетативных органов. Симптомы цинковой недостаточности ши-
роко встречаются у различных плодовых культур (яблоня, черешня, японская слива,
орех, пекан, абрикос, авокадо, лимон, виноград). Особенно страдают от недостатка цин-
ка цитрусовые культуры.
Физиологическая роль цинка в растениях очень разнообразна. Он оказывает боль-
шое влияние на окислительно-восстановительные процессы, скорость которых при его
недостатке заметно снижается. Дефицит цинка ведет к нарушению процессов пре-
вращения углеводородов. Установлено, что при недостатке цинка в листьях и корнях то-
мата, цитрусовых и других культур, накапливаются фенольные соединения, фитосте-
ролы или лецитины, уменьшается содержание крахмала. .
Цинк входит в состав различных ферментов: карбоангидразы, триозофосфатде-
гидрогеназы, пероксидазы, оксидазы, полифенолоксидазы и др.
Обнаружено, что большие дозы фосфора и азота усиливают признаки недоста-
точности цинка у растений и что цинковые удобрения особенно необходимы при внесе-
нии высоких доз фосфора .
Значение цинка для роста растений тесно связано с его участием в азотном об-
мене. Дефицит цинка приводит к значительному накоплению растворимых азотных со-
единений - аминов и аминокислот, что нарушает синтез белка. Многие исследования
подтвердили, что содержание белка в растениях при недостатке цинка уменьшается.
Под влиянием цинка повышается синтез сахарозы, крахмала, общее содержание
углеводов и белковых веществ. Применение цинковых удобрений увеличивает содержа-
ние аскорбиновой кислоты, сухого вещества и хлорофилла. Цинковые удобрения повы-
шают засухо-, жаро- и холодоустойчивость растений .
Агрохимическими исследованиями установлена необходимость цинка для большого
количества видов высших растений. Его физиологическая роль в растениях много-
сторонняя. Цинк играет важную роль в окислительно-восстановительных процессах,
протекающих в растительном организме, он является составляющей частью ферментов,
непосредственно участвует в синтезе хлорофилла, влияет на углеводный обмен в рас-
тениях и способствует синтезу витаминов .
При цинковой недостаточности у растений появляются хлоротичные пятна на ли-
стьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. У
яблони, груши и ореха при недостатке цинка развивается так называемая розеточная
болезнь, выражающаяся в образовании на концах ветвей мелких листьев, которые рас-
полагаются в форме розетки . При цинковом голодании плодовых почек закладыва-
ется мало. Урожайность семечковых резко падает. Черешня еще более чувствительна к
недостатку цинка, чем яблоня и груша. Признаки цинкового голодания у черешни прояв-
ляются в появлении мелких, узких и деформированных листьев. Хлороз вначале появ-
ляется на краях листьев и постепенно распространяется к средней жилке листа. При
сильном развитии заболевания весь лист становится желтым или белым .
Из полевых культур цинковая недостаточность чаще всего проявляется на куку-
рузе в виде образования белого ростка или побеления верхушки. Показателем цинкового
голодания у бобовых (фасоль, соя) является наличие хлороза на листьях, иногда асим-
метрическое развитие листовой пластинки. Недостаток цинка для растений чаще всего
наблюдается на песчаных и супесчаных почвах с низким его содержанием, а также на
карбонатных и старопахотных почвах.
Применение цинковых удобрений повышает урожай всех полевых, овощных и
плодовых культур. При этом отмечается снижение пораженности растений грибковыми
заболеваниями, повышается сахаристость плодовых и ягодных культур .
БОР
Бор необходим для развития меристемы. Характерными признаками недостатка бора
являются отмирание точек роста, побегов и корней, нарушения в образовании и разви-
тии репродуктивных органов, разрушение сосудистой ткани и т.д. Недостаток бора очень
часто вызывает разрушение молодых растущих тканей.
Под влиянием бора улучшаются синтез и перемещение углеводов, особенно са-
харозы, из листьев к органам плодоношения и корням. Известно, что однодольные рас-
тения менее требовательны к бору, чем двудольные.
В литературе имеются данные о том, что бор улучшает передвижение ростовых
веществ и аскорбиновой кислоты из листьев к органам плодоношения. Установлено, что
цветки наиболее богаты бором по сравнению с другими частями растений. Он играет
существенную роль в процессах оплодотворения. При исключении его из питательной
среды пыльца растений плохо или даже совсем не прорастает. В этих случаях внесение
бора способствует лучшему прорастанию пыльцы, устраняет опадание завязей и усили-
вает развитие репродуктивных органов.
Бор играет важную роль в делении клеток и синтезе белков и является необходи-
мым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор
в углеводном обмене. Недостаток его в питательной среде вызывает накопление саха-
ров в листьях растений. Это явление наблюдается у наиболее отзывчивых к борным
удобрениям культур. Бор способствует и лучшему использованию кальция в процессах
обмена веществ в растениях. Поэтому при недостатке бора растения не могут нор-
мально использо-вать кальций, хотя последний находится в почве в достаточном коли-
честве. Установлено, что размеры поглощения и накопления бора растениями возрас-
тают при повышении калия в почве.
При недостатке бора в питательной среде наблюдается нарушение анатомиче-
ского строения растений, например, слабое развитие ксилемы, раздробленность флоз-
мы основной паренхимы и дегенерация камбия. Корневая система развивается слабо,
так как бор играет значительную роль в ее развитии.
Недостаток бора ведет не только к понижению урожая сельскохозяйственных
культур, но и к ухудшению его качества. Следует отметить, что бор необходим расте-
ниям в течение всего вегетационного периода. Исключение бора из питательной среды в
любой фазе роста растения приводит к его заболеванию.
Внешние признаки борного голодания изменяются в зависимости от вида расте-
ний, однако, можно привести ряд общих признаков, которые характерны для большин-
ства высших растений . При этом наблюдается остановка роста корня и стебля, за-
тем появляется хлороз верхушечной точки роста, а позже при сильном борном голода-
нии следует полное его отмирание. Из пазух листьев развиваются боковые побеги, рас-
тение усиленно кустится, однако вновь образовавшиеся побеги, вскоре тоже останавли-
ваются в росте и повторяются все симптомы заболевания главного стебля. Особенно
сильно страдают от недостатка бора репродуктивные органы растений, при этом боль-
ное растение может совершенно не образовывать цветков или их образу-ется очень ма-
ло, отмечается пустоцвет опадание завязей.
В этой связи применение борсодержащих удобрений и улучшение обеспечения
растений этим элементом способствует не только увеличению урожайности, но и значи-
тельному повышению качества продукции. Улучшение борного питания ведет к повыше-
нию сахаристости сахарной свеклы, повышению содержания витамина С и сахаров
в плодово-ягодных культурах, томатах и т. д. .
Наиболее отзывчивы на борные удобрения сахарная и кормовая свекла, люцерна и кле-
вер (семенные посевы), овощные культуры, лен, подсолнечник, конопля, эфиромаслич-
ные и зерновые культуры.
МЕДЬ
Различные сельскохозяйственные культуры обладают неодинаковой чувствительностью
к недостатку меди. Растения можно расположить в следующем порядке по убывающей
отзывчивости на медь: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпи-
нат, люцерна и белокочанная капуста. Средней отзывчивостью отличаются картофель,
томат, клевер красный, фасоль, соя. Сортовые особенности растений в пределах одного
и тоже вида имеют большое значение и существенно влияют на степень проявления
симптомов медной недостаточности. .
Недостаток меди часто совпадает с недостатком цинка, а на песчаных почвах
также с недостатком магния. Внесение высоких доз азотных удобрений усиливает по-
требность растений в меди и способствует обострению симптомов медной недостаточ-
ности.
Несмотря на то, что ряд других макро- и микроэлементов оказывает большое
влияние на скорость окислительно-восстановительных процессов, действие меди в этих
реакциях является специфическим, и она не может быть заменена каким-либо другим
элементом. Под влиянием меди повышается как активность пероксисилазы, так и сни-
жение активности синтетических центров и ведет к накоплению растворимых углеводов,
аминокислот и других продуктов распада сложных органических веществ. Медь является
составной частью ряда важнейших окислительных ферментов - полифенолксидазы, ас-
корбинатоксидазы, лактазы, дегидрогеназы и др. Все указанные ферменты осуществ-
ляют реакции окисления переносом электронов с субстрата к молекулярному кислороду,
который является акцептором электронов. В связи с этой функцией валентность меди в
окислительно-восстановительных реакциях изменяется от двухвалентного до однова-
лентного состояния и обратно.
Медь играет большую роль в процессах фотосинтеза. Под влиянием меди повы-
шается как активность пароксидазы, так и синтез белков, углеводов и жиров. При ее не-
достатке разрушение хлорофилла происходит значительно быстрее, чем при нормаль-
ном уровне питания растений медью, наблюдается понижение активности синтетических
процессов, что ведет к накоплению растворимых углеводов, аминокислот и других про-
дуктов распада сложных органических веществ .
При питании аммиачным азотом недостаток меди задерживает включение азота в
белок, пептоны и пептиды уже в первые часы после внесения азотной подкормки. Это
указывает на особо важную роль меди при применении аммиачного азота.
Характерной особенностью действия меди является то, что этот микроэлемент
повышает устойчивость растений против грибковых и бактериальных заболеваний. Медь
снижает заболевание зерновых культур различными видами головни, повышает устой-
чивость растений к бурой пятнистости и т.д. .
Признаки медной недостаточности проявляются чаще всего на торфянистых и на
кислых песчаных почвах. Симптомы заболевания растений при недостатке в почве меди
проявляются для зерновых в побелении и засыхании кончиков листовой пластинки. При
сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем ко-
лошения не происходит и весь стебель постепенно засыхает.
Плодовые культуры при недостатке меди заболевают так называемой суховер-
шинностью или экзантемой. При этом на листовых пластинках слив и абрикосов между
жилками развивается отчетливый хлороз.
У томатов при недостатке меди отмечается замедление роста побегов, слабое
развитие корней, появление темной синевато-зеленой окраски листьев и их закручива-
ние, отсутствие образования цветков.
Все указанные выше заболевания сельскохозяйственных культур при применении
медных удобрений полностью устраняются, и продуктивность растений резко возрастает
.
МОЛИБДЕН
В настоящее время молибден по своему практическому значению выдвинут на одно из
первых мест среди других микроэлементов, так как этот элемент оказался весьма важ-
ным фактором в решении двух кардинальных проблем современного сельского хозяй-
ства - обеспечения растений азотом, а сельскохозяйственных животных белком .
В настоящее время установлена необходимость молибдена для роста растений
вообще. При недостатке молибдена в тканях растений накапливается большое количе-
ство нитратов и нарушается нормальный азотный обмен.
Молибден участвует в углеводородном обмене, в обмене фосфорных удобрений,
в синтезе витаминов и хлорофилла, влияет на интенсивность окислительно-восстанови-
тельных реакций. После обработки семян молибденом в листьях повышается содержа-
ние хлорофилла, каротина, фосфора и азота.
Установлено, что молибден входит в состав фермента нитратрадуктазы,
осуществляющей восстановление нитратов в растениях. Активность этого фермента зависит
от уровня обеспеченности растений молибденом, а так же от форм азота, применяемых
для их питания. При недостатке молибдена в питательной среде резко снижается актив-
ность нитратрадуктазы.
Внесение молибдена отдельно и совместно с бором в различные фазы роста го-
роха улучшало активность аскорбинатоксидазы, полифенолоксидазы и пароксидазы.
Наибольшее влияние на на активность аскорбинатоксидазы и полифенолоксидазы ока-
зывает молибден, а активность пароксидазы - бор на фоне молибдена.
Нитратредуктаза при участии молибдена катализирует восстановление нитратов
и нитритов, а нитритредуктаза также при участии молибдена восстанавливает нитраты
до аммиака. Этим объясняется положительное действие молибдена на повышение со-
держания белков в растениях.
Под влиянием молибдена в растениях увеличивается также содержание углево-
дов, каротина и аскорбиновой кислоты, повышается содержание белковых веществ.
Воздействием молибдена в растениях увеличивается содержание хлорофилла и повы-
шается интенсивность фотосинтеза.
Недостаток молибдена приводит к глубокому нарушению обмена веществ у рас-
тений. Симптомам молибденовой недостаточности предшествует в первую очередь из-
менение в азотном обмене у растений. При недостатке молибдена тормозится процесс
биологической редукции нитратов, замедляется синтез амидов, аминокислот и белков.
Все это приводит не только к снижению урожая, но и к резкому ухудшению его качества
.
Значение молибдена в жизни растений довольно разнообразно. Он активизирует
процессы связывания атмосферного азота клубеньковыми бактериями, способствует
синтезу и обмену белковых веществ в растениях. Наиболее чувствительны к недостатку
молибдена такие культуры как соя, зерновые бобовые культуры, клевер, многолетние
травы. Потребность растений в молибденовых удобрениях обычно возрастает на кислых
почвах, имеющих рН ниже 5,2.
Физиологическая роль молибдена связана с фиксацией атмосферного азота, ре-
дукцией нитратного азота в растениях, участием в окислительно-восстановительных
процессах, углеводном обмене, в синтезе хлорофилла и витаминов .
Недостаток молибдена в растениях проявляется в светло-зеленой окраске ли-
стьев, при этом сами листья становятся узкими, края их закручиваются внутрь и посте-
пенно отмирают, появляется крапчатость, жилки листа остают-ся светло-зелеными. Не-
достаток молибдена выражается, прежде всего, в появлении желто-зеленой окраски ли-
стьев, что является следствием ослабления фиксации азота атмосферы, стебли и че-
решки растений становятся красновато-бурыми .
Результаты опытов по изучению молибденовых удобрений показали, что при их
применении повышается урожай сельскохозяйственных культур и его качество, но осо-
бенно важна его роль в интенсификации симбиотической азотофиксации бобовыми куль-
турами и улучшении азотного питания последующих культур .
КОБАЛЬТ
Кобальт необходим для усиления азотофиксирующей деятельности клубеньковых бак-
терий Он входит в состав витамина В12, который имеется в клубеньках, оказывает за-
метное положительное действие на активность фермента гидрогеназы, а также увели-
чивает активность нитратредуктазы в клубеньках бобовых культур.
Этот микроэлемент влияет на накопление сахаров и жиров в растениях. Кобальт
благоприятно действует на процесс синтеза хлорофилла в листьях растений, уменьшает
его распад в темноте, увеличивает интенсивность дыхания, содержание аскорбиновой
кислоты в растениях. В результате внекорневых подкормок кобальтом в листьях расте-
ний повышается общее содержание нуклеиновых кислот. Кобальт оказывает заметное
положительное действие на активность фермента гидрогеназы, а также увеличивает ак-
тивность нитратредуктазы в клубеньках бобовых культур. Доказано положительное дей-
ствие кобальта на томаты, горох, гречиху, ячмень, овес и другие культуры. .
Кобальт принимает активное участие в реакциях окисления и восстановления,
стимулирует цикл Кребса и оказывает положительное влияние на дыхание и энергети-
ческий обмен, а также биосинтез белка нуклеиновых кислот. Благодаря своему положи-
тельному влиянию на обмен веществ, синтез белков, усвоение углеводов и т.п. он явля-
ется могучим стимулятором роста.
Положительное действие кобальта на сельскохозяйственные культуры проявля-
ется в усилении азотофиксации бобовыми, повышении содержания хлорофилла в ли-
стьях и витамина В12 в клубеньках. .
Применение кобальта в виде удобрений под полевые культуры повышало урожай
сахарной свеклы, зерновых культур и льна. При удобрении кобальтом винограда повы-
шался урожай его ягод, их сахаристость и снижалась кислотность.
В таблице 1 приведены обобщенные характеристики влияния микроэлементов на
функции растений, поведение их в почве при различных условиях, симптомы их дефи-
цита и его последствия.
Приведенный обзор физиологической роли микроэлементов для высших растений
свидетельствует о том, что недостаток почти каждого из них ведет к проявлению в той или иной степени хлороза у растений.
На засоленных почвах применение микроэлементов усиливает поглощение рас-
тениями питательных веществ из почвы и снижается поглощение хлора, повышается на-
копление сахаров и аскорбиновой кислоты, наблюдается некоторое увеличение содер-
жания хлорофилла и повышается продуктивность фотосинтеза. Кроме этого необходимо
отметить и фунгицидные свойства микроэлементов, подавление грибковых заболеваний
при обработке семян и при внесении их по вегетирующим растениям.

Микроэлементы для растений необходимы им в очень небольших количествах, однако реакция на их дефицит всегда бывает очень острой. Нехватка микроэлементов чаще всего встречается на торфяных, песчаных и карбонатных почвах. При этом при систематическом внесении и золы огородные культуры, как правило, не нуждаются в дополнительных подкормках микроэлементами.

Ряд внешних признаков позволяет точно определить, какого именно питательного элемента не достает растения. В этом случае растения опрыскивают раствором, содержащим нужное .

Бор обеспечивает лечение и профилактику некоторых заболеваний, стимулирует образование завязей, предупреждает их опадение, способствует развитию репродуктивных органов и проводящих сосудов, оказывает положительное влияние на синтез ряда ферментов. Бор увеличивает урожайность сахарной свеклы, содержание сахаристых веществ в корнеплодах, урожайность гороха, кормовых бобов и прочих бобовых культур.

При дефиците бора у ягодных и плодовых растений постепенно отмирают верхушечные почки и корешки, а также наблюдаются вялое цветение и плодоношение. Тогда первую обработку раствором борной кислоты осуществляют через 5-6 дней после окончания цветения (10-15 граммов сухого вещества на 10-литровое ведро воды), а следующую - через 15-30 дней.

Медь усиливает синтез белка, делает растения более засухо- и морозоусточивыми, активизирует их сопротивляемость вирусным и грибным болезням, а также является составной частью некоторых ферментов. В общем и целом нормализует белковый и углеводный обмен в тканях растений.

При нехватки меди свежие листочки приобретают хлорозный вид, утрачивают упругость, вянут и погибают. Для восполнения недостатка данного микроэлемента растения опрыскивают по листьям сернокислой медью (2-5 грамма на 8-10 литров воды) либо медным купоросом по нераспустившимся почкам (100-200 граммов на 8-10 литров воды). Каждые 5-6 лет в огородный грунт вносят пиритные остатки по норме 50 граммов на каждый метр квадратный площади участка.

Марганец играет серьезную роль в процессах фотосинтеза, формировании витамина С, входит в состав ряда ферментов, увеличивает урожайность свеклы и сахаристость ее корней.

При марганцевом голодании наблюдается хлороз в промежутках между жилками листьев, образование точечных пятнышек отмирающих тканей. Чтобы помочь растениям в этой ситуации, проводят опрыскивание раствором сернокислого марганца (5-10 граммов на 8-10 литров воды) либо марганцовокислым калием (2-3 грамма на 8-10 литров воды). Марганцовые удобрения чаще всего используют на карбонатных почвах.

Цинк является составной частью многих ферментов, участвующих в процессах синтеза белков и углеводов, дыхания и оплодотворения.

При дефиците цинка формируются тонкие ветки с очень короткими междоузлиями возле верхушки и розетками листочков на ней, листья вырастают узкие, мелкие, морщинистые и хлоратичные. В этом случае рекомендуется сделать внекорневую подкормку по листочкам раствором сернокислого цинка (5-10 граммов на 8-10 литров воды).

В целом, чтобы обогатить плоды и ягоды полезным солями и способствовать нормальному росту и развитию культурных растений, микроэлементы следует вносить как при их посеве/посадке, так и, собственно говоря, в период вегетации. Их можно давать и в смеси (к примеру, удобрение Маг-бор, Микрасса, Коктейль и т.п.), и по отдельности (борная кислота, сернокислые железо, медь, цинк, магний, молибденовокислый аммоний). Активные микроэлементы из этих солей сравнительно неплохо усваиваются растениями, улучшая их общее состояние и давая прибавку в урожае. Тем не менее, в случае внекорневой подкормки они быстро смываются дождями с поверхности листьев, а при предпосадочном внесении и поливах под корень просачиваются в более глубокие почвенные горизонты, накрепко связываясь с частицами земли (особенно часто такое происходит на карбонатных, торфяных и подзолистых грунтах). В итоге растение получает лишь небольшую долю вносимого микроудобрения. Но и повышать их дозу категорически не рекомендуется: перекорм приводит к болезни или даже гибели растения.

Поэтому микроудобрения целесообразнее вносить в хелатной форме. Хелаты, или комплексоны, представляют собой соединения металлов с органическими кислотами, к примеру лимонной. В них каждый атом микроэлемента фиксируется особыми, напоминающими конечности краба химическими связями, которые то крепко держат его, то открываются и отпускают. Хелаты, например Цитовит и Микровит, отличаются более выраженной активностью, а главное, они отлично и без потерь поглощаются тканями растения, поскольку они растворимы в воде, но практически не смываются с листьев. Также важно отметить, что элементы в готовом хелатном микроудобрении находятся в более сбалансированном виде, чем в смеси обычных солей. Это облегчает их использование и сокращает их расход.

Хелаты микроэлементов (желательно совместно с комплексным минеральным удобрением) можно применять для замачивания посадочного материала, картофельных клубней, севка, опрыскивания рассады после ее /высадки и внекорневой подкормки растений. Эффект от обработки проявляется уже через пару-тройку дней. Дружно и спорно образуются всходы, а растения быстро и интенсивно развиваются. , перца и баклажана получается более облиственная, насыщенно-зеленая, коренастая. Рассадные растения лучше переносят пересадку, возвратные весенние заморозки.

В конечном итоге грамотное применение микроэлементы для растений приводит к усилению их роста, повышению урожая, ускорению его созревания и в целом улучшает качество овощной и ягодной продукции.

МИКРОЭЛЕМЕНТЫ

Существенное значение в питании растений, формировании урожая и его качества имеют бор, марганец, молибден, медь, цинк, кобальт, йод. Содержание большинства этих элементов в растениях колеблется от тысячных до стотысячных долей процента. Поэтому они получили название микроэлементов.

Микроэлементы принимают участие во многих физиологических и биохимических процессах у растений. Они - обязательная составная часть многих ферментов, витаминов, ростовых веществ, играющих роль биологических ускорителей и регуляторов сложнейших биохимических процессов. Если ферменты - катализаторы, то микроэлементы можно назвать катализаторами катализаторов. Микробиологические процессы также протекают при участии энзимов, в состав которых входят микроэлементы.

Растениям микроэлементы необходимы в ничтожно малых количествах. Однако недостаток их, как и избыток, нарушает деятельность ферментативного аппарата; а следовательно, и обмен веществ у растений. При недостатке микроэлементов растения заболевают: сахарная свекла, например, гнилью сердечка, лен - бактериозом, злаковые культуры на торфянистых и осушенных болотах - пусто-зернистостью и т.д.

Микроэлементы ускоряют развитие растений, процессы оплодотворения и плодообразования, синтез и передвижение углеводов, белковый и жировой обмен веществ и т.д. Поэтому необходимо внимательно изучать потребность растений в каждом микроэлементе и оптимально ее удовлетворять. Следует помнить, что с усилением химизации земледелия значительно повышаются урожаи, а следовательно, и вынос микроэлементов из почвы (табл. 4.17).

Потребность в микроэлементах в значительной мере удовлетворяется при внесении навоза, а также некоторых минеральных удобрений, особенно сырых калийных солей, фосфоритной муки, томасшлака, золы и др.

Значительное содержание бора, марганца, меди, цинка и кобальта в суперфосфате, по-видимому, связано с содержанием их в исходном фосфатном сырье (табл. 4.18).

4.17. Вынос микроэлементов с урожаями культур, г/га

Культура

Урожай,

ц/га

Си

Мп

Мо

Пшеница зерно

0,10

солома

0,54

Ячмень зерно

0,42

солома

0,35

Клевер (сено, 2 укоса)

7,00

Картофель (клубни)

0,74

Листовая капуста (весь урожай)

4,32

В навозе отмечается высокое содержание всех микроэлементов. Следует отметить, что количество микроэлементов, поступающее с обычными дозами минеральных удобрений, намного меньше того, которое требуется для пополнения их почвенных запасов (табл. 4.18).

4.18. Содержание микроэлементов в минеральных и органических удобрениях,

мг/кг

Удобрение

Си

Мп

Со

Аммиачная селитра

следы

следы

следы

следы

Мочевина

Суперфосфат

из апатита (Невский завод)

12,5

1,18

142,0

0,27

из фосфорита Каратау

31,2

10,6

двойной гранулированный (Волжский завод)

2,15

127,5

0,44

Фосфоритная мука (Кингисеппское месторождение)

2,10

22,5

9,94

1,44

Хлористый калий (Соликамск)

1,70

15,3

следы

Калийная соль

0,91

42,2

0,29

1,33

Нитрофоска (Московский завод)

1,47

15,0

0,20

Навоз

8,00

868,0

6,00

Торф низинный

10,2

326,0

Торф верховой

43,0

В минеральных удобрениях 70-75% валового содержания микроэлементов находится в подвижной форме, т.е. усвояемой для растений. Подвижность микроэлементов в навозе значительно меньше, чем в минеральных удобрениях, и составляет не более 25%. Однако однократное за ротацию внесение навоза в дозе 40 т/га полностью компенсирует вынос меди, марганца, молибдена четырьмя или пятью обычными культурами и почти полностью восполняет вынос цинка.

4.19. Содержание микроэлементов в почве и растениях, мг/кг сухого вещества

Микроэлементы

Почва

Полевые культуры

Бор

1,5-50,0

0-1,0

Медь

1,5-30,0

7,0-20,0

Кобальт

0,4-4,0

0,2-0,4

Молибден

0,2-7,5

0,2-0,8

4.20. Содержание усвояемых форм микроэлементов в почвах, мг/кг

Почва

В (Н 2 0)

Си (1 н. НС1)

Zn (1 н. КС1)

Мп (0,1 н. H 2 S0 4)

Мо (окса- лат)

Со (1 н. HN0 3)

Дерново-

подзолистая

Чернозем

Серозем

Каштановая

Бурая

0,08-0,38

0,38-1,58

0,22-0,62

0,30-0,90

0,38-1,95

0,05-5,0

4.5- 10,0

2.5- 10,0

8.0- 14,0

6.0- 12,0

0,12-20,00

0,10-0,25

0,09-0,12

0,06-0,14

0,03-0,20

50,0-150

1,0-75

1.5- 125

1.5- 75

1.5- 75

0,04-0,97

0,02-0,33

0,03-0,15

0,09-0,62

0,06-0,12

0,12-3,0

1,1-2,2 0,9-1,5 1,1-6,0 0,57-2,25

4.21. Валовое содержание микроэлементов в почвообразующих породах, мг/кг

Породы

Си

Мп

Мо

Со

Глины

Покровные

суглинки

Пески

140-150

18-22

10-20

25-40 9-26 3,2-8,0

620-800

600-650

70-200

1-20 2,9-3,2 до 0,8

8-52 11,8-14 2,9-4,2

до 54 30-49 8,2-28

Бор играет важную роль в опылении и оплодотворении цветков растений. Недостаток его приводит к большому количеству не- оплодотворенных цветков, которые опадают, что в свою очередь резко снижает семенную продуктивность растений. Бор стимулирует образование клубеньков на корнях бобовых растений. При недостатке его снижается фиксация азота атмосферы этими растениями. Борное голодание растений отрицательно влияет на углеводный и белковый

обмен в растениях, сахар и крахмал накапливаются в листьях, отток их в корнеплоды и другие места отложения задерживается. Не­достаток бора приводит к нарушению анатомического строения растений: наблюдаются задержка в развитии меристемы и дегенера­ция камбия (цв. ил. 12-13, 32).

Бор не может реутилизироваться, так как он не поступает из старых органов растения в молодые. Признаки борного голодания появляются прежде всего на молодых частях растений. Симптомы борного голодания для отдельных сельскохозяйственных растений следующие: сахарная свекла заболевает гнилью сердечка, у льна отмирает точка роста вследствие поражения его бактериозом, а у картофеля отмечается повышенная заболеваемость клубней паршой.

При известковании резко снижается содержание усвояемого бора в почве. По-видимому, он переходит в слаборастворимые со­единения с известью. Кроме того, при известковании усиливается микробиологическая деятельность в почве, что приводит к иммобили­зации усвояемых форм бора, так как микроорганизмы используют его на построение органического вещества своего тела. Нельзя забывать, что кальций, внесенный с известью, является антагонистом бора и задерживает поступление его в растение. Этим объясняется высокое положительное действие борных удобрений на произвесткованных кислых почвах. Эффективность их возрастает на фоне высоких доз минеральных удобрений, так как с высокими урожаями выносится и больше бора из почвы.

Растения содержат различное количество бора. В зерне хлеб­ных злаков его содержится от 4,7 (кукуруза) до 8,1 (пшеница) мг/кг сухого вещества, в бобовых - от 9,5 (чечевица) до 29 (соя), в семенах льна - 14,2, гречихи-18,7, в клубнях картофеля - до 13, в корнях свеклы - до 32 мг/кг. Вынос бора с хорошими урожаями сельско­хозяйственных культур составляет 30-270 г/га. Больше его выносят технические и бобовые культуры, меньше - злаковые (табл. 4.22).

4.22. Содержание бора в урожаях важнейших сельскохозяйственных

культур

Культура

Культура

Зерновые

21-42

Картофель

70-140

Кукуруза (зеленая масса)

32-67

Кормовые

корнеплоды

84-168

Клевер (сено)

41-82

Сахарная свекла

136-272

Лен

47-94

Почвы нашей страны содержат разное количество бора (табл. 4.23). Меньше всего его в почве тундры. Недостаточно обеспечены бором дерново-подзолистые и лесостепные почвы, а также красно­земы и торфяные почвы. Больше всего валового и усвояемого бора содержится в солонцах и солончаках. Для решения вопроса о необходимости внесения борных удобрений важно знать количество в почве усвояемого бора, которое может значительно изменяться в пределах землепользования одного и того же хозяйства. Наиболее доступный для растений - водорастворимый бор.

4.23. Содержание бора в почвах, мг/кг почвы

Почва

Вало­

вой

Усвоя­

емый

Почва

Вало­

вой

Усвоя­

емый

Почва тундры

Дерново-подзолистая

Лесостепная

Черноземы

Каштановая

4.5- 5

4.6- 8

4.7- 12

4.8- 15

следы -0,1 0,04-0,6 0,3-0,9 0,5-1,8 0,6-1,5

Серозем

Засоленная

Краснозем

Торфяная

20-80

20-120

1-10

0,4^,8 0,9-40,0 0,2-0,5 0,05-2,5

Борные удобрения эффективны в том случае, когда в почве содержится меньше 0,3 мг водорастворимого бора на 1 кг почвы. Почвы Нечерноземной зоны по содержанию в них усвояемых форм бора делятся на пять групп (мг/кг почвы):

< 0,1 - очень бедная,

0 , 1 - 0,2 - бедная,

0 ,3-0,5 - среднеобеспеченная,

2.5- 67-1,0 - богатая,

8.0- 1,0 - очень богатая.

Эффективность борных удобрений чаще всего проявляется на вновь осваиваемых дерново-глеевых слабозаболоченных и торфяных почвах. От применения бора заметно повышается урожай корней и семян кормовых корнеплодов, семян клевера и люцерны. Положи­тельно влияют борные удобрения на урожай гороха и кормовых бобов. Из зерновых культур наибольшей отзывчивостью отличается кукуруза. Положительный эффект от бора на пшенице, ржи, овсе, просе и ячмене наблюдается лишь на бедных этим микроэлементом известкованных верховых торфяниках.

Марганец принимает участие в окислительно-восстанови­тельных процессах: фотосинтезе, дыхании, в усвоении молекулярного и нитратного азота, а также в образовании хлорофилла. Все эти процессы протекают под влиянием различных ферментов, а марга­нец - составная часть ферментов и их активаторов.

Роль марганца в различных физиолого-биохимических процессах изучал П.А. Власюк. Он установил, что при аммиачной форме азота в почве марганец действует как окислитель, при нитратной -как восстановитель. Марганец способствует образованию аскорбиновой кислоты и других витаминов, накоплению сахаров в корнях сахарной свеклы, увеличению содержания белков в зерне пшеницы и кукурузы.

При недостатке марганца в почве растения заболевают серой пятнистостью, которая может вызвать гибель растений, а при менее остром недостатке этого элемента резко снижается урожай сельскохозяйственных культур (цв. ил. 17-20). Типичные признаки недостатка марганца прежде всего проявляются на овсе: на старых листьях появляются желтые и желто-серые пятна и полосы (отсюда и название болезни - серая пятнистость). В опытах с внесением марганца под злаковые травы, клевер, люцерну на бедной этим элементом болотной почве получены прибавки урожая от 5 до 20%. При недостатке марганца угнетается рост корней.

Марганец в растениях содержится в больших количествах, чем другие микроэлементы: от нескольких миллиграммов до нескольких сотен миллиграммов на 1 кг сухого вещества. Вынос марганца с урожаями различных сельскохозяйственных культур составляет 0,5-

4,5 кг/га.

Валовое содержание марганца в почве выражается значительными величинами. По данным А.П. Виноградова, в пахотном слое различных почв содержится следующее количество марганца (в %): в дерново-подзолистых - 0,06-0,09, лесостепных - 0,06-0,20, черноземе - 0,08-0,09, каштановых - 0,10-0,28, в красноземах - 0,05-0,08, сероземах - 0,08-0,29. В почве марганец бывает двух-, трех- и четырехвалентным. В растения поступает только двухвалентная форма, находящаяся в почве или в обменном состоянии в почвенном поглощающем комплексе, или в почвенном растворе.

Окисленная форма марганца недоступна растениям, однако она при определенных условиях способна восстанавливаться до двухвалентной и поглощаться растениями. Например, при плохой аэрации почвы окисленная форма марганца анаэробными микроорганизмами почвы восстанавливается до двухвалентной формы. Поэтому в сильно уплотненных, плохо аэрируемых почвах всегда марганца больше, чем на рыхлых легких почвах. Рыхление почвы и другие приемы, усиливающие ее аэрацию, способствуют уменьшению количества в ней подвижного марганца. Содержание усвояемого марганца увеличивается после увлажнения почвы. Иногда появляется необходимость в приемах, снижающих содержание в почве подвижного
марганца. Потребность в марганце обычно возникает при недостаточном увлажнении, в засушливые годы и на легких почвах.

На усвоение марганца растениями в значительной мере влияет реакция почвы. Обычно недостаток его обнаруживается при pH 5,8 и больше. Марганцевая недостаточность наблюдается чаще всего на карбонатных почвах. На кислых же переувлажненных почвах часто наблюдается избыток подвижного марганца, который резко снижает урожай сельскохозяйственных культур. При избытке подвижного марганца в растениях нарушается углеводный, белковый и фосфатный обмен веществ, нарушаются процессы закладки генеративных органов, оплодотворения и налива зерна. Особенно вреден избыток марганца в почве для озимых культур, клевера и люцерны.

Избыток подвижных форм устраняется известкованием кислых почв, внесением навоза, фосфорных удобрений, в том числе суперфосфата в рядки или лунки. Эффективен также комплекс агротехнических приемов, направленных на создание хорошей аэрации почвы и уменьшение ее переувлажнения. Необходимость применения марганцевых удобрений может возникнуть при избыточном внесении извести.

Известкование бедных марганцем почв может привести к недостаточности его для растений, при сильном же подкислении создается высокая концентрация марганца, что отрицательно действует на растения. Поэтому рекомендуется поддерживать pH почвы на возможно более высоком уровне.

Кислотность почвы может способствовать подвижности и доступности марганца, вплоть до явлений марганцевого отравления. Лучшее средство против кислотности - хорошее известкование почвы, нейтрализующее избыток марганца.

< 0,1 - очень бедная,

0,1-10 - бедная,

11-50 - среднеобеспеченная,

51-100 - богатая,

> 100 - очень богатая.

Это разделение почвы ориентировочное и нуждается в проверке путем закладки полевых опытов.

Роль молибдена в жизни растений довольно разнообразна. Он активизирует процессы связывания атмосферного азота клубеньновыми бактериями, живущими на корнях бобовых растений, оказывает положительное влияние на жизнедеятельность свободно-живущих азотфиксирующих микроорганизмов, способствует синтезу и обмену белковых веществ в растениях, восстановлению нитратного азота. Он входит в состав фермента нитратредуктазы, восстанавливающего нитраты до аммония, без чего невозможен синтез белковых веществ.

Я.В. Пейве все биохимические процессы в растениях с участием молибдена подразделяет на 3 группы.

1. Действие молибдена на процессы восстановления нитратов, нитритов и гидроксиламида до аммиака и биосинтез аминокислот.

2. Участие молибдена в биохимических процессах, связанных с фиксацией молекулярного азота клубеньковыми бактериями в симбиозе с бобовыми культурами и свободноживущими почвенными микроорганизмами.

3. Влияние молибдена на биосинтез нуклеиновых кислот и белков.

Все эти процессы взаимосвязаны. Так, процесс восстановления нитратов связан с биосинтезом аминокислот и белков. Молекулярный азот, который восстанавливается до аммиака, также используется на построение белков и других азотсодержащих соединений у микроорганизмов и высших растений. При недостатке молибдена в растениях образуется меньше белков, накапливаются нитраты, нарушается обмен азотистых веществ. Молибден участвует в окислительно-вос-становительных процессах, углеводном обмене, синтезе витаминов и хлорофилла. Недостаток его в почве приводит к замедлению образования хлорофилла, резкому снижению содержания аскорбиновой кислоты.

Симптомы молибденового голодания наиболее четко проявляются на крестоцветных, особенно цветной капусте, и бобовых растениях (цв. ил. 14). Листья растений капусты сначала становятся пятнистыми, края листьев заворачиваются и завядают. При остром недостатке молибдена молодые центральные листья закручиваются в спираль. Листовая пластинка не развивается в ширину, так что внутренние листья состоят почти из листовых жилок. У бобовых вследствие ослабленной фиксации атмосферного азота проявляются признаки азотного голодания, урожай растений при этом резко снижается.

Молибдена в сухом веществе содержится очень мало (0,1-1,3 мг/кг). Больше его содержится в бобовых растениях. В различных растениях содержится следующее количество молибдена (в мг/кг сухого вещества): в корнях сахарной свеклы - 0,16, в листьях - 0,60, в сене красного клевера - 0,91, в зеленой массе желтого люпина - 1,12, в зерне пшеницы и овса - 0,16-0,19.

Если молибдена в кормах больше 10 мг/кг сухих веществ, животные часто страдают от так называемого молибденозиса. Токсическое действие молибдена на растения иногда проявляется на щелочных почвах, богатых подвижными его формами. На кислых дерново-подзолистых и светло-серых лесостепных почвах чаще всего отмечается недостаток молибдена, так как при повышенном содержании в почве подвижного алюминия, железа и марганца он переходит в неусвояемое состояние. На таких почвах нужно вносить молибден, особенно под бобовые культуры (горох, кормовые бобы, вику, клевер, люцерну, люпин). Хорошо отзываются на внесение молибдена также салат, цветная капуста и другие овощные культуры. Несколько меньшей отзывчивостью отличаются технические культуры: хлопчатник, лен, сахарная свекла. Зерновые хлеба слабо реагируют на внесение молибдена.

От внесения молибдена получены следующие прибавки урожая (в ц/га): вико-овсяной смеси (зеленая масса) - 44,7, люпина синего (зеленая масса) - 65,6, подсолнечника (зеленая масса) - 96,3, кормовой капусты - 81,3, помидоров - 75,0, кабачков - 79,2, свеклы кормовой - 57,7, турнепса - 43,2, яровой пшеницы - 1,1, гречихи -

3,2. Молибден не только повышает урожай сельскохозяйственных культур, но и улучшает качество продукции: увеличивается содержание белка, углеводов, аскорбиновой кислоты и каротина.

Наиболее богаты молибденом черноземные почвы, бедны -засоленные, каштановые и сероземы. Обычно в почвах тяжелого гранулометрического состава молибдена больше, чем в песчаных и супесчаных. По содержанию валового молибдена в почве не всегда можно определить обеспеченность растений этим элементом, так как для них важно наличие достаточного количества усвояемой формы молибдена, которая составляет 5-20% от валового содержания. Наиболее бедны подвижными формами молибдена дерново-под-золистые и лесостепные почвы, красноземы, наиболее богаты -черноземы, каштановые и сероземы.

Недостаток молибдена чаще всего наблюдается на дерново-подзолистых и светло-серых лесостепных почвах. Доступность его зависит от реакции среды: подкисление почвы понижает доступность молибдена растениям, подщелачивание - повышает. Внесение кислых

и физиологически кислых минеральных удобрений без известкования на этих почвах снижает доступность молибдена растениям.

4.24. Содержание молибдена в различных почвах, мг/кг почвы

Почва

Валовый (по Н.С. Ав­донину)

Почва

Подвижный (по Г.А. Се- левцевой)

Дерново-подзолистая

Дерново-подзолистая

песчаная

0,05

Болотная

супесчаная

0,14

Лесостепная

суглинистая

0,25

Чернозем

Лесостепная

0,32

Каштановая

Чернозем мощный

0,46

Засоленная

0,95

Т емно-каштановая

0,42

Серозем

Каштановая

0,45

Краснозем

Серозем типичный

0,50

Горная

Краснозем Торф верховой

0,21

0,30

До настоящего времени пока еще не разработаны точные показатели обеспеченности молибденом растений для всех почвенно­климатических районов нашей страны по содержанию его усвояемых форм в почве. Исследование этого вопроса представляет большое научное и практическое значение.

Дерново-подзолистые почвы по содержанию в них подвижного молибдена (в оксалатной вытяжке, мг/кг почвы) Я.В. Пейве делит на следующие группы:

4.5- 0,05 - очень бедная,

2.5- 05-0,15 - бедная,

8.0- 2-0,25 - среднеобеспеченная,

6.0- 3-0,5 - богатая,

1.5- 0,5 - очень богатая.

Эти показатели ориентировочны и зависят от биологических особенностей растений, свойств почв и других факторов.

Потребность в молибдене, как и в других микроэлементах, возрастает при высоких урожаях сельскохозяйственных культур на фоне хорошей агротехники и применения высоких доз минеральных удобрений.

Медь необходима для жизни растений в небольших количест­вах. Однако без меди погибают даже всходы. Она участвует в процессах окисления, входит в состав окислительных ферментов, например полифенолоксидазы, усиливает интенсивность дыхатель­ных процессов, что сказывается на характере углеводного и белкового обмена веществ, придает хлорофиллу большую устойчивость, усиливает фотосинтетическую деятельность зеленых растений. Без меди затрудняется синтез белка. В листьях бобовых содержится медьсодержащий белок - пластоцианин. Он входит в состав хлоропластов

И, как полагают, необходим для фотосинтеза. О большой роли меди в процессах фотосинтеза свидетельствует тот факт, что почти 100% ее содержится в пластидах. Важную роль она играет в водном балансе растений. При недостатке меди растения теряют тургор, листья становятся вялыми, поникшими (цв. ил. 15).

Симптом медной недостаточности проявляется прежде всего у злаковых культур. Листья растений на концах становятся белыми и скручиваются, растения кустятся, но дают мало колосьев. В зависимости от степени недостаточности меди колосья или метелки частично или совсем бывают пустыми. Урожай зерна бывает небольшим, зерна - щуплыми, озерненность колоса - неполная. Следовательно, недостаток меди сильнее всего влияет на формирование генеративных органов. Болезнь растений, вызываемую недостаточностью меди, называют белоколосицей, или «белой чумой». Иногда ее называют «болезнью вновь освоенных торфяных почв», так как чаще всего растения испытывают недостаток этого элемента при освоении заболоченных и торфяных почв. Не все растения одинаково чувствительны к недостатку меди. Например, ячмень, яровая и озимая пшеница более чувствительны, чем озимая рожь.

По данным М.В. Каталымова, содержание меди колеблется от

1,5 до 8,1 мг/кг сухого вещества. Вынос меди с урожаем пшеницы составляет (в г/га) 7,3, овса - 15, фасоли - 14,2, проса - 21, свеклы кормовой - 45,4, свеклы сахарной - 52,5, люпина желтого - 126, картофеля - 169,4.

Валовое содержание меди в почвах колеблется от 1 до 100 мг/кг. Наиболее богаты медью красноземы и желтоземы, а самые бедные - торфяники. Однако по валовому содержанию этого элемента в почве нельзя судить о степени обеспеченности им. Из всех форм соединений меди в почве доступными для растений являются водорастворимая (ее менее 1 % от валового содержания) и поглощенная поверхностью коллоидов почвы. При вхождении меди в комплексные органические соединения подвижность ее резко снижается. Часть меди входит в кристаллическую решетку минералов. Усвояемые формы меди определяют па содержанию ее в вытяжке 0,5 н. азотной или 1 н. соляной кислоты. По содержанию подвижной меди в почвах определяют степень ее обеспеченности этим элементом и необходимость внесения медных удобрений.

Данные по обеспеченности почв медью, по Я.В. Пейве, приведены в табл. 4.25. Эти показатели ориентировочны и должны

уточняться путем закладки полевых опытов по определению эф­фективности медных удобрений в зависимости от содержания усвояемой меди в почве.

4.25. Обеспеченность почвы медью, мг/кг почвы

Почва

Высокая

Средняя

Низкая

Очень

низкая

Дерново-глеевая, торфяно-глеевая, дерново-сильноподзолистая, песчаная

2,5-3,5

1,0-2,5

0,5-1,0

Дерново-карбонатная суглинистая

2,0-3,0

Торфянистая (низинные, переходные и вересковые болота)

3,0-5,0

1,0-3,0

Дерново-подзолистая суглинистая

2,0-3,0

1,0-2,0

Цинк участвует во многих физиолого-биохимических процес­сах растений. Главным образом он является катализатором и акти­ватором многих процессов. Цинк окисляется в ферменте карбо- ангидразе, расщепляющей угольную кислоту на углекислый газ и воду, активирует каталазу, пероксидазу, липазу, протеазу и инвертазу. Он принимает участие в белковом, липоидном, углеводном, фосфор­ном обмене веществ, в биосинтезе витаминов (аскорбиновой кислоты и тиамина) и ростовых веществ - ауксинов. Цинк улучшает водо­удерживающую способность растений, повышает количество прочно связанной воды.

Недостаток цинка приводит к нарушению обмена веществ у растений. Происходит распад белков под действием фермента рибо- нуклеазы, деятельность которого подавляется при достаточном содержании этого микроэлемента в растении. Цинковое голодание нарушает также углеводный обмен у растений: задерживается образование сахарозы и крахмала, больше накапливается редуци­рующих сахаров. При нарушении фосфорного обмена в растениях больше накапливается минерального фосфора и уменьшается количество фосфорорганических соединений. При резком недостатке цинка нарушается процесс образования хлорофилла, в результате чего проявляется пятнистый хлороз, позже пятна приобретают красновато­бронзовую окраску (цв. ил. 16).

Одним из признаков недостатка этого микроэлемента является образование на концах ветвей плодовых деревьев побегов с укороченными междоузлиями и мелкими листьями. Эта болезнь получила название розеточности. При этом ослабляется закладка плодовых почек, плоды бывают уродливые и мелкие. На однолетних культурах недостаток цинка обнаруживается очень редко. Наиболее чувствительны к его недостатку плодовые деревья, бобы, кукуруза, соя, фасоль, хмель и лен, менее - картофель, томаты, лук, люцерна,

просо, свекла и красный клевер; совсем не реагируют овес, пшеница, горох, спаржа, горчица и морковь.

В растениях содержится мало цинка - 15-22 мг/кг сухого вещества. При большом количестве его в почве содержание в рас­тениях может достигать сотых долей процента. Вынос цинка с урожаем характеризуется следующими величинами (в кг/га): сахар­ной свеклы - 1,2-2,1, картофеля - 1,6, горчицы - 1-1,5, капусты и тимофеевки - 0,058-0,076.

Обычно цинковое голодание растений, особенно овощных, плодовых, кукурузы, обнаруживается на карбонатных почвах, богатых известью, где подвижных форм цинка мало.

Цинк, как и медь, фиксируется поглощающим комплексом почвы и закрепляется в форме органических комплексных соеди­нений. С увеличением pH доступность цинка уменьшается. Поэтому недостаток цинка чаще всего проявляется на песчаных карбонатных почвах и богатых кальцием болотных почвах. На усвояемость цинка отрицательно влияют и фосфаты почвы, которые могут образовывать с ним труднорастворимые соединения.

Валовое содержание цинка в различных почвах страны не­одинаково (табл. 4.26). Количество подвижного цинка в почвах (эту форму его извлекают из почвы 0,1 н. хлористым калием) также подвержено значительным колебаниям. Снижение подвижности цинка на карбонатных почвах объясняется связыванием его известью в нерастворимые цинкаты кальция. Кроме того, кальций задерживает поступление цинка в растения, так как эти катионы являются антагонистами. Подкисление почвы обычно сопровождается увеличе­нием содержания в почве подвижного цинка.

4.26. Содержание цинка в почве, мг/кг почвы

Почва

Почва

Тундровая

Дерново-подзолистая

Лесостепная

53-76

20-67

28-65

Чернозем

Каштановая

Серозем

Краснозем

24-90

26-63

46-73

По данным Я.В. Пейве, почвы по обеспеченности их подвиж­ным цинком делятся на следующие группы (мг/кг почвы):

4.5- 0,2 - очень бедная,

2.5- 3-1 ,0 - бедная,

8.0- 3 ,0 - среднеобеспеченная,

6.0- 5,0 - богатая,

>5,1 - очень богатая.

Эта группировка почв по содержанию цинка ориентировочная и должна уточняться в конкретных почвенно-климатических условиях путем закладки полевых опытов.

Кобальт необходим не только растениям, но и животным. Он входит в состав витамина В12, при недостатке которого нарушается обмен веществ - ослабляется образование гемоглобина, белков, нуклеиновых кислот, и животные заболевают акобальтозом, сухоткой, авитаминозом.

Роль кобальта в питании растений мало изучена. Известно, например, что небольшое количество этого микроэлемента требуется бобовым культурам для усиления работы клубеньковых бактерий. Однако потребность в кобальте для фиксации молекулярного азота во много раз меньше, чем в молибдене. Витамин В12 находят в клубеньках бобовых растений. Кобальт входит в состав ферментов кобамида, коэнзима и амутазы. Однако о соединениях кобальта в растениях мало известно (например, в растениях содержится кобальто-протеин).

Кобальта в растениях немного (0,2-0,6 мг/кг сухого вещества). Чтобы животные не испытывали недостатка в нем, кормовые культуры должны содержать 0,7 мг этого микроэлемента на 1 кг корма.

Оптимальная для растений доза кобальта в питательном растворе 0,06 мг/л. Среднее содержание кобальта в почвах составляет 110_3% (Власюк, 1969). Поступление этого элемента в растения усиливается с подкислением реакции среды, т.е. аналогично другим микроэлементам (кроме молибдена).

Йод также представляет интерес с точки зрения недостатка его для животных, так как он стимулирует деятельность гормона тироксина. Убедительных опытных данных о необходимости его для растений пока нет. Однако установлено благоприятное действие йода для разных культур при концентрациях его от 0,025 до 0,02 мг/л. В водных и песчаных культурах при содержании его свыше 1 мг/л воды и 1 кг почвы отмечалось отрицательное его влияние на томаты.

Йод может поглощаться листьями растений из атмосферы. Он входит в состав свободных аминокислот и соответственно в белки. Вынос его с урожаем около 10 г/га. Среднее содержание в почвах следующее (в %): в черноземах и каштановых - 5,3*0,0004, в лесостепных - 2,6*0,0004, в сероземах - 2,5 10*0,0004, в дерново-подзолистых -2,510*0,0004, в торфянистых - 1,2-10*0,0004, в красноземах - 110*0,004. В течение года йода с осадками попадает в почву от 9 до 50 г/га. Некоторое количество йода вносится в почву с сырыми калийными солями.
Недостаток йода в воде и пище вызывает заболевание щитовидной железы, особенно в горных районах, где меньше содержится йода. С профилактической целью применяют поваренную соль, обогащенную этим элементом.

Определить по внешним признакам недостаток для растения того или иного микроэлемента практически бывает очень трудно. Поэтому в каждом конкретном случае решение о применении микроудобрений для растений станет необходимым в том случае, если точно установлен его недостаток. При этом следует учитывать pH почвы, свойства поглощающего комплекса, влажность почвы, наличие других ионов, выращиваемую культуру и т.д. Следует помнить, что при неправильном применении микроудобрений легко можно превысить порог токсичности, что нанесет урожаю и качеству продукции непоправимый ущерб.

Восполнение слабо доступных для растений микроэлементов средствами листовой подкормки при помощи удобрения содержащего оптимальный набор микроэлементов в физиологически сбалансированном соотношении, являлся основополагающей задачей при разработке удобрения нового поколения - «Аквадон-Микро», которое позволяет обогатить растения микроэлементами при минимальных экономических затратах и повысить урожайность сельскохозяйственных культур.

Бор (B ) один из наиболее важных микроэлементов для растений. В клетке большая его часть представлена комплексными соединениями с полисахаридами клеточной стенки. Без бора, прежде всего, нарушаются процессы формирования репродуктивных органов, созревания семян и плодоношения. Исключительно важную функцию выполняет бор в углеводном обмене. Бор способствует лучшему использованию кальция в процессах обмена веществ в растениях. В этой связи применение «Аквадон-Микро» способствует не только увеличению урожайности, но и значительному повышению качества продукции.

Железо (Fe) участвует в функционировании основных элементов электрон-транспортных цепей дыхания и фотосинтеза, в восстановлении молекулярного азота и нитрата до аммиака, катализирует начальные этапы синтеза хлорофилла. Недостаток железа часто имеет место при переувлажнении на карбонатных, а также на плохо дренированных почвах, проявляется в пожелтении листьев (хлороз) и снижении интенсивности окислительно-восстановительных процессов.

Кобальт (Co) необходим высшим растениям для фиксации молекулярного азота бактероидами и концентрируется в клубеньках. Необходим для синтеза витамина В12. Является мощным стимулятором роста.

Магний (Mg) участвует в белковом и углеводном обмене, входит в состав хлорофилла, который при его недостатке разрушается, предотвращает хлороз. Происходит отток хлорофилла по жилкам из старых листьев к молодым. Недостаток магния проявляется в пожелтении участков листа между жилками и в снижении урожайности. Остро востребован культурами с большим выносом калия (сахарная свекла, виноград и др.)

Марганец (Mn) активизирует ферменты в растении, накапливается в листьях и участвует в фотолизе воды, являясь компонентом фотосистемы, способствует накоплению и передвижению сахаров из листьев в корнеплоды, стимулирует нарастание новых тканей в точках роста, улучшает поглощение железа из почвы и предупреждает хлороз. При его недостатке резко снижается выделение кислорода при фотосинтезе и содержание углеводов, особенно в корнях. Чувствительными культурами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, картофель, яблоня. Поступление марганца в растения снижается при низкой температуре и высокой влажности почвы, что чаще всего наблюдается ранней весной, и от этого в значительной степени страдают озимые.

Медь (Cu) входит в состав ферментов и участвует в окислительно-восстановительных превращениях, около 50% ее содержится в хлоропластах. При дефиците меди нарушается лигнификация клеточных стенок, снижается интенсивность дыхания и фотосинтеза. Признаки медного голодания проявляются чаще всего на
торфянистых и на кислых песчаных почвах. Симптомы заболевания для зерновых культур выражаются в побелении и засыхании кончиков листовой пластинки. При сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем колошение не происходит, и весь стебель постепенно засыхает.
Растения отзывчивые к меди: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпинат, люцерна, белокочанная капуста, картофель.
Медь повышает устойчивость растений против грибковых и бактериальных заболеваний, снижает заболевание зерновых культур различными видами головни, повышает устойчивость растений к бурой пятнистости. Плодовые культуры при недостатке меди заболевают, так называемой, суховершинностью или экзантемой.
Медь в растениях повышает содержание гидрофильных коллоидов, и, поэтому, в сухое и жаркое лето внекорневые подкормки этим элементом очень эффективны.

Молибден (Mo) часто называют микроэлементом азотного обмена, поскольку он входит в состав нитратредуктазы и нитрогеназы. При его недостатке, что часто бывает на кислых почвах, в тканях накапливается большое количество нитратов и нарушается нормальный обмен веществ у растений. Задерживается рост растений, тормозится синтез хлорофилла.

Сера (S). При недостатке серы наблюдается слабый рост растений и преждевременное пожелтение листьев. Больше всех других серу содержат и нуждаются в ней растения семейства крестоцветных, а также бобовые и картофель. При недостатке серы у плодовых культур листья и черешки становятся деревянистыми. В отличие от азотного голодания при серном голодании листья растений не опадают, хотя имеют бледную окраску. Недостаток ее отмечается на разных почвах, особенно на дерново-подзолистых, легких, малогумусных, а также в районах с большим количеством осадков, удаленных от промышленных центров.

Цинк (Zn) входит в состав многих ферментов, участвует в образовании хлорофилла, способствует ситнезу витаминов, поэтому подкормка цинком усиливает рост растений. Цинк играет важную роль в окислительно-восстановительных процессах, протекающих в растительных организмах. При его дефиците нарушается фосфорный обмен: возрастает содержание неорганического фосфата, замедляется его превращение в органические формы, что проявляется на растениях в хлоротичных пятнах на листьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. Применение «Аквадон-Микро» с содержанием цинка повышает урожай всех полевых, овощных и плодовых культур. При этом отмечается снижение пораженности растений грибковыми заболеваниями, повышается сахаристость плодовых и ягодных культур.

Для успешного культивирования сельскохозяйственных растений очень важна роль сбалансированности минерального питания. Избыток или недостаток какого либо элемента приводит к нарушению поступления других, что вызывает задержку ростовых процессов и снижает урожайность. Так, некоторые макроудобрения, внесенные в больших дозах, влияют на доступность для растений микроэлементов: фосфорные - цинка и меди, азотные - меди и молибдена, калийные - бора и магния. В то же время недостаток в почве микроэлементов снижает эффективность удобрений с макроэлементами

Витамины для зеленого друга

В роли "витаминов" для растений выступают микроэлементы. В начале ХХ века было установлено, что, кроме основных элементов питания растений, им нужны еще и соединения бора В, марганца Mn, меди Cu, цинка Zn, причем в очень небольшом количестве. Эти соединения назвали дополнительными элементами питания растений, или микроудобрениями, а сами элементы бор, марганец, медь, цинк -- микроэлементами. Достаточно ли в почве микроэлементов, можно определить, только наверняка зная, что основных элементов питания растений вполне хватает для их нормального роста и развития.

К открытию роли микроэлементов в растительном мире земледельцы пришли не сразу. Сначала наблюдательные крестьяне-пасечники заметили, что в одних местах при цветении гречихи (известного растения-медоноса) пчелы активно собирают мёд, а в других -- нет, причем в облюбованных пчелами гречишных посевах есть и колонии рыжих муравьев. Потом было обнаружено, что в организме рыжих муравьев содержание марганца достигает рекордного значения -- 0,05%. После тщательного исследования оказалось, что цветки гречихи, облюбованные пчелами, выделяют вдвое больше нектара, а это результат наличия в почве соединений марганца. Больше нектара -- лучше опыление, значит, и урожай обильнее.

Не прошло мимо внимания садоводов и то, что дикие яблони, растущие на почве, где обильно разрастаются фиалки, имеют отлично развитую листву и дают много яблок. А фиалки пышно растут там, где в почве достаточное количество соединений цинка.

И эти, и многие другие наблюдения, а также анализы почв с разными показателями плодородия привели к выводу: надо вносить в почву не только обычные удобрения, но и соединения микроэлементов, если их не хватает. Только там, где почвы удобрены навозом или древесной золой, не требуется подкормки микроэлементами: в золе и навозе их вполне достаточно.

Марганец, о котором шла речь выше, вносят в почву осенью в виде перманганата калия (марганцовки) или сульфата марганца; этих солей требуется 2--5 г на 1 кв. м. Можно и опрыскивать растения слабыми водными растворами марганцовки или сульфата марганца (5--10 г на ведро воды) в весенне-летний период (перед распусканием цветочных почек, во время массового цветения и в период интенсивного роста растений). Если марганца в почве слишком мало, растения дают об этом знать: листья их становятся желтоватыми из-за "межжилкового хлороза", который начинается с краев листа и идет к его центру.

Цинк вносят в почву в виде соли -- сульфата или хлорида цинка в количестве 0,3--0,5 г на 1 кв. м. Для опрыскивания растений применяют разбавленные водные растворы этих солей (2--10 г на ведро воды). Заметное количество цинка содержится в известняке и доломите и вместе с ними попадает в почву при известковании. Если цинка в почве недостаточно, растения страдают розеточностью и некрозом (омертвлением) листьев.

Бор помогает синтезу сахаров, увеличивает устойчивость растений к недостатку почвенной влаги; при "борном голодании" на яблонях появляются пустоцветы, завязи опадают, листья становятся уродливыми: края и верхушки их отмирают, а жилки приобретают красный цвет; отмирают и верхушки почек.
Бор вносят в почву в виде борной кислоты или буры; чаще всего это делают весной, смешивая эти микроудобрения с измельченной почвой или мелким песком. Для подкормки сада требуется обычно 1,5--2,0 г буры или 0,9--1,2 г борной кислоты на 1 кв. м. Чтобы опрыскать растения перед цветением и в начале массового цветения, готовят раствор, содержащий 10--30 г буры или 6--20 г борной кислоты в небольшом количестве горячей воды, а потом разбавляют этот раствор холодной водой до 10 л. Черноземы богаты бором и не нуждаются в этом микроудобрении.

Недостаток меди в почве дает о себе знать тем, что на молодых листьях яблонь появляются коричневые пятна, а кончики их белеют. Верхушки побегов увядают и отмирают, поэтому при хроническом недостатке меди в течение ряда лет плодовое дерево становится больше похоже на куст. Картофель и помидоры при нехватке меди склонны к заболеванию фитофторой. Обычно в почве вполне достаточно меди, особенно в тех местах, где применялись в качестве ядохимикатов бордосская или бургундская смеси. Однако на осушенных болотах и торфяниках этого микроэлемента может оказаться слишком мало, и тогда его недостаток восполняют, опрыскивая растения медным купоросом.

Микроэлементы в саду чаще всего вносят путем опрыскивания растений по листве - так же, как при внекорневой подкормке.
Концентрация водного раствора удобрения должна составлять:

Борная кислота 0,8--1,2 г/л

Бура 0,2--1,6 г/л

Двойной суперфосфат 1,6--2,4 г/л

Карбамид (мочевина) 3,2--4,0 г/л

Медный купорос 0,2--0,4 г/л

Молибдат аммония 0,1--0,2 г/л

Нитрат аммония 1,2--1,6 г/л

Сульфат калия 0,8--1.2 г/л

Сульфат магния 1,2--1,6 г/л

Сульфат марганца 0,4--0,8 г/л

Сульфат цинка 0,4--0,8 г/л

Хлорид калия 0,4--0,8 г/л

Напоминаем: опрыскивание надо проводить рано утром или поздно вечером, а днем -- только при облачной, но не дождливой погоде.
Чрезмерная концентрация водных растворов удобрений вредна; на листьях появляются ожоги, особенно опасные для молодых растений.
Поэтому весной содержание удобрений в водных растворах для внекорневой подкормки должно быть более низким.

ПРИМЕНЕНИЕ МИКРОУДОБРЕНИЙ НА САДОВОМ УЧАСТКЕ

Микроэлементы принимают участие в протекании всех жизненных процессов в растениях, при этом необходимы они лишь в микро дозах, в отличие от базовых компонентов питания. Биологическое значение микроэлементов огромно, так как при их отсутствии невозможно существование самой жизни. А вот их дефицит в почве проявляется, прежде всего, в угнетении всех основных функций растительного организма, в особенности тех, что отвечают за его развитие и рост. В результате растения не могут полностью раскрыть свой потенциал и дают бедный и низкокачественный урожай, а то и вовсе погибают. Именно поэтому грамотное применение микроудобрений является обязательной составной частью технологии возделывания овощных культур и позволяет увеличить их урожайность с минимальным ущербом для вашего кошелька.

Микроэлементы в питании растений несут ответственность за выполнение множества разносторонних задач, среди которых:

  • стимуляция синтеза в тканях растений всего спектра ферментов, которые позволяют им более активно использовать энергию, воду и питание (N, P, K). Это, в свою очередь, обеспечивает более высокий урожай;
  • ускорение развития растений и созревания урожая;
  • повышение устойчивости к неблагоприятным факторам внешней среды, в том числе к бактериальным и грибным болезням;
  • укрепление восстановительных сил растений после перенесенного стресса, вызванного неблагоприятной погодой, огрехами в уходе и т.п.;
  • активизация иммунитета растений.

Большая часть микроэлементов обладают каталитическими свойствами, то есть способствуют ускорению всех биохимических реакций в растении. При этом только применение комплексных микроудобрений помогает добиться вышеозначенного каталитического эффекта и нормализовать рост и развитие растений.

Микроудобрения работают оптимальным образом, если поступают в почву в сочетании с макроэлементами, особенно это относится к фосфору и цинку, нитратному азоту и молибдену.

На протяжении всего вегетационного цикла растения испытывают острую потребность в ряде микроэлементов, так как некоторые из них не реутилизируются, то есть используются растениями однократно (не переносятся из стареющих частей в более молодые). Таким образом, чтобы использование микроудобрений оказывало свое положительное воздействие на продуктивность, обмен веществ и развитие растений, их необходимо строго дозировать и вносить в почву в оптимальные сроки и при помощи наиболее эффективных методов.

Учеными-агрономами доказано, что микроэлементы не имеют себе равных именно при внекорневых подкормках и в комбинации с макроэлементами. Подобные вещества, вносимые в профилактических дозах, не аккумулируются в почве, а полностью усваиваются растениями, влияя на них исключительно благотворно. Умеренное применение микроудобрений делает растения менее подверженными состоянию физиологической депрессии, а значит, делает их более устойчивыми к разнообразным заболеваниям, что дает ощутимую прибавку к урожаю с минимальными финансовыми и трудовыми вложениями.

Конечно, каждый конкретный препарат с микроэлементами должен использоваться в строгом соответствии с рекомендациями, приведенными его производителем на упаковке. Однако существуют некоторые универсальные практические замечания, которые необходимо учитывать при работе с микроудобрениями.

При внекорневых подкормках в жаркую, и особенно в солнечную, погоду велика вероятность возникновения химического ожога краев листьев. Поэтому все обработки по листу рекомендуется проводить при плотной облачности или после заката и до восхода солнца. Если есть потребность опрыскать растения каким-либо фунгицидом, то нужно проследить, чтобы суммарная концентрация химических веществ в смеси оставалась в границах допустимого. Также в этом случае из состава необходимо исключить макроудобрения.

Вообще говоря, не стоит шарахаться при слове «химия». Научные исследования показывают, что разумное, умеренное и своевременное применение микроудобрений обеспечивает получение экологически чистой и здоровой овощной продукции. Так, в картофельных клубнях здоровых растений, не испытавших недостатка микроэлементов, регистрируется меньше опасных для здоровья человека нитратов и радионуклидов.

Микроэлементов очень много, это почти вся таблица Менделеева. Но более или менее изучено и включено в круг забот земледельцев не более шести: марганец, бор, медь, молибден, кобальт, цинк. Они, хотя и в исчезающе малых количествах, регулируют все физиологические процессы в растениях и не только в растениях, но и в животных и в человеке. Поскольку растительные продукты составляют немалую часть нашего меню, то наше здоровье в большой степени зависит от содержания в них микроэлементов. Без них продукты питания неполноценны. Об остальных микроэлементах известно гораздо меньше. Может быть, они также необходимы, но пока что приходится полагаться на природу и надеяться, что почва сама позаботится о снабжении ими растений.

Однако не так давно мы узнали, что микроэлементы могут быть не только полезными, но и вредными. Ведь тяжелые металлы, которыми нас так пугают в связи с растущим загрязнением среды, это тоже микроэлементы. Высокое их содержание в промышленных выбросах привело к тому, что их концентрация в почвах и грунтовых водах достигла токсического уровня. В связи с этим встал вопрос совершенно обратного порядка - как обезвредить их и уменьшить их поступление в растения. К наиболее опасным и распространенным загрязнителям относят ртуть, кадмий, свинец и даже медь и цинк.

Мы сосредоточим свое внимание на первом аспекте, который в последние годы также стал предметом повышенного интереса деятелей агрономической науки. Выяснилось, что в почвах многих районов обнаружен серьезный дефицит полезных микроэлементов. Этого следовало ожидать, так как в течение многих десятков и даже сотен лет их запас в почвах истощался в связи с выносом их растениями, вымыванием в грунтовые воды и с поверхностным стоком. Считали, что их количества в растениях настолько малы, что можно не заботиться о восполнении этих потерь. Но вот оказалось, что в самом главном для питания растений корнеобитаемом слое запасы почти исчерпаны и необходимо их пополнять. Когда это обнаружилось, агрономам оставалось только схватиться за голову. Трудно представить, сколько урожая в течение многих лет недобиралось из-за недостатка микроэлементов.

Микроэлементы в почве.

Микроэлементы, как и другие элементы минерального питания растений, находятся в почве в нескольких формах: водорастворимая, обменная и труднодоступная. В последнюю входят элементы в составе минералов и трудноразлагаемы х органических соединений, а также удержанные прочными связями на глинистых частицах. Корни растений непосредственно усваивают водорастворимую и частично обменную форму, которые вместе составляют фонд доступного для растений микроэлемента. Остальное служит резервом, который в результате микробиологическ ого и химического разложения, а также в результате активности самих корней понемногу пополняет фонд доступной формы.

Содержание микроэлементов в почвах определяется их содержанием в почвообразующих породах и варьирует в очень широких пределах. Если посмотреть на картосхемы, отражающие определенные анализами количества микроэлементов в почвах, мы увидим очень мелкую мозаику из участков с высоким и низким содержанием. Однако в среднем для дерново-подзолис тых почв выявлена следующая закономерность: Почвы хорошо обеспечены марганцем, средне - цинком, бором и медью, недостаточно - молибденом и кобальтом. В серых лесных почвах и черноземах наблюдается приблизительно тот же ряд. Однако, когда говорят «хорошо обеспечены», имеют в виду общее содержание всех форм элемента, из которого доступная форма составляет лишь незначительную часть. Например, общее содержание бора в дерново- подзолистой почве 2-15 мг на кг почвы, в черноземе - 4-50 мг, а доступная форма в дерново-подзолис той почве - 0,08 мг на кг почвы, в черноземе - 0,38-1,58 мг. Можно представить, как быстро растения вычерпают весь запас доступной формы. Однако этого не происходит, если в корнеобитаемом слое есть достаточный резервный фонд и активная микрофлора.

Общее содержание микроэлементов выше в тех почвах, где больше глины. Поэтому тяжелые почвы лучше обеспечены ими, чем легкие. Большинство микроэлементов хорошо растворимы в воде и в легких почвах вымываются в грунтовые воды. По той же причине на тяжелых почвах их концентрация в верхнем корнеобитаемом слое выше, чем в более глубоком слое, а в легких - наоборот.

Большая часть микроэлементов входит в состав органических веществ и минералов в разной степени поддающихся разложению. Разнообразие минералов, содержащих микроэлементы довольно велико. Например, молибден входит в состав двадцати минералов, цинк - шестидесяти четырех. Марганец ведет себя как настоящий хамелеон. В почве он без конца меняет свои обличья, величину и знак заряда своих ионов и поэтому может образовывать самые разнообразные соединения. Всего в почве насчитывают около 14 форм марганца и около 150 минералов, содержащих марганец. В зависимости от условий одна форма переходит в другую и соответственно меняется ее растворимость и доступность растениям.

Подробнее о доступной форме

Содержание в почве доступной формы микроэлементов во многом определяется их растворимостью. По этому показателю микроэлементы делятся на хорошо растворимые - марганец и бор, средне растворимые - медь и цинк и плохо растворимые - молибден и кобальт. Помимо растворимости содержание того или иного микроэлемента в почвенном растворе определяется его способностью образовывать прочные связи с глинистыми частицами и органическими веществами. В прочно-связанной форме элемент не усваивается корнями. Поэтому в богатых органикой черноземах величина доступной формы хорошо растворимого бора значительно ниже, чем хуже растворимых кобальта и меди. Органические частицы прочно удерживают ионы бора и не выпускают их в раствор.

Растворимость микроэлементов в значительной степени зависит от кислотности. Все микроэлементы, кроме молибдена лучше растворяются в кислой среде. Поэтому известкование большими дозами приводит к уменьшению доступной формы.

Установлено, что в высокоплодородно й почве с высоким содержанием органики и нейтральным рН растения очень активно поглощают все элементы питания и в том числе микроэлементы несмотря на их невысокую растворимость (Панасин В.И..1986). Это объясняется интенсивным ростом и соответственно высокой потребностью в элементах питания. Поэтому, как утверждает тот же автор, на высокоплодородны х почвах всегда необходимо внесение микроудобрений. Это не значит, что общие запасы микроэлементов в почве истощились, но значит, что почва, то-есть микрофлора, не успевает обеспечить достаточно быстрое пополнение доступного фонда, чтобы удовлетворить потребности растений.

Уровень обеспеченности микроэлементами и анализы.

Содержание доступной для корней формы называют обеспеченностью микроэлементами. Существует несколько градаций обеспеченности, причем для каждого микроэлемента это свой ряд содержаний, который определяется анализами. О надежности этих анализов сами исследователи не очень высокого мнения.. Результат анализа сильно зависит от времени взятия пробы, от условия хранения образцов, от влажности почвы и т.д. Например, содержание доступного марганца в течение сезона меняется в два-три раза. Кроме того, мы уже знаем на примере других элементов питания, что корни работают совсем не так, как реагенты (слабые кислоты, слабые соли) , которые используют для получения вытяжек из почвы изучаемого элемента. То, что не поддается слабой кислоте, корни получают с помощью ферментов, выделяемых бактериями и грибами ризосферы. О недостатке микроэлементов лучше судить по развитию растений, их внешнему виду и признакам недостаточности, которые будут описаны ниже.

Более надежный способ судить об обеспеченности микроэлементами - внести микроудобрения в почву или провести внекорневую подкормку и посмотреть, даст ли это какой-нибудь эффект. Если - да, то это означает, что какого-то микроэлемента в почве не хватает и удобрение следует вносить, если - нет, само собой разумеется, нечего тратить на них время и деньги.

Надо еще иметь в виду, что потребность в микроэлементах тем выше, чем выше плодородие почвы. На высокоплодородны х почвах, которые могут обеспечить высокий урожай, его величина может быть ограничена нехваткой микроэлементов скорее, чем средний урожай на более бедных почвах. Поэтому предлагается принять следующее правило: на высокоплодородны х почвах микроэлементы всегда в дефиците и необходимо внесение микроудобрений.

Микроэлементы в растениях.

Мы не будем вдаваться в подробности, объясняя, какую роль играют микроэлементы в жизни растений. Достаточно сказать, что микроэлементы входят в состав ферментов, играющих ключевую роль во всех жизненных процессах в растениях. Недостаток микроэлементов ведет к снижению урожая, ухудшению его качества, общему ослаблению растений и, следовательно, повышению их чувствительности к инфекциям и вредителям. Например, микроудобрения молибдена, меди, кобальта увеличивают устойчивость томатов к фитофторе, бор аналогично действует на картофель, кобальт и медь увеличивают устойчивость капусты к бактериальным болезням.

Разные виды растений отличаются по потребности в микроэлементах и по способности накапливать их в своих тканях. Для иллюстрации приведем данные Орловой Э.Д., полученные на дерново-подзолис той почве Омской области: На 100 кг урожая в зерне кукурузы содержалось марганца 600 мг, в плодах томатов - 10 000 мг, в корнеплодах столовой свеклы - 4 000 мг, в репчатом луке (луковицы) - 70 мг. Содержание меди: кукуруза - 50 мг, томаты - 3 000, столовая свекла - 170 мг, лук - 70 мг. Эти цифры говорят о том, насколько велики различия в потребности разных овощных культур в том или ином микроэлементе. Они говорят также о том, насколько малые количества микроэлементов поглощаются растениями. Недаром к ним прибавляют приставку «микро». Сравните с аналогичными данными по калию, где на формирование 100 кг урожая требуются не миллиграммы, а сотни грамм этого элемента.

Мы видим также, что микроэлементы отличаются по своей способности накапливаться в тканях растений. Польская исследовательниц а А. Кабата-Пендиас (1989) приводит следующий ряд: сильно накапливаются кадмий, бор, средне - цинк, молибден, кобальт, свинец, слабо - марганец, железо, йод. В грибах сильно накапливаются ртуть, кадмий, медь, слабее - цинк, марганец. Этот ряд полезно всегда иметь в виду, если вы собираетесь использовать микроудобрения, так как у большинства микроэлементов весьма размыта граница между полезной и токсичной концентрацией. При этом имеется в виду токсичность не столько для растений, сколько для человека, который будет потреблять эти растения в пищу. Например, известны случаи, когда избыток в тканях растений такого, казалось бы, безобидного микроэлемента как молибден, приводил к серьезным заболеваниям людей.

Микроэлементы на садовом участке.

Садоводов, конечно, не может не интересовать вопрос, достаточно ли микроэлементов в почве садового участка и не теряют ли они часть урожая от их недостатка. Определить это не просто. Есть признаки, по которым определяют острый дефицит того или иного микроэлемента, но они не очень специфичны и у разных культур разные. Чаще всего это хлороз. Недостаток марганца проявляется в хлорозе молодых листьев, молибдена - хлороз краев листьев, цинка - хлороз листовой пластинки между жилками, остановка роста, меди - белые скрученные верхушки, завядание, бора - хлороз листьев, гибель точки роста, нарушение развития. Чаще всего недостаток того или иного микроэлемента проявляется не так остро, а выражается просто в снижении урожая. Поэтому надо знать, какие культуры к недостатку какого микроэлемента наиболее чувствительны. В общем виде зависимость садовых культур от наличия в почве микроэлементов выглядит так:

К недостатку бора чувствительны - бобовые, капуста, свекла, сельдерей, картофель, томаты, огурцы, яблони, груши, подсолнечник.

К недостатку марганца чувствительны - бобовые, томаты, свекла, перец, кукуруза, плодовые и ягодные культуры, злаки.

К недостатку меди чувствительны - злаки, подсолнечник, люцерна, шпинат.

К недостатку молибдена чувствительны - все виды капусты (особенно цветная), бобовые, томаты, салат.

К недостатку цинка чувствительны - злаки, бобовые, плодовые деревья.

К недостатку кобальта чувствительны - злаки, бобовые, свекла, овощные и ягодные культуры.

Для садоводов микроэлементы обычно продаются в наборе и, наверное, это правильно, так как развитие растений чаще всего зависит не от одного элемента, а от всего комплекса. Если у вас есть сомнения, обработайте этим комплексом семена растений. Это более эффективный способ, чем внекорневая подкормка. И посмотрите, каков будет эффект. Если никакого эффекта, значит, ваша почва содержит в достаточном количестве все необходимые микроэлементы.

Микроудобрения.

При определенных обстоятельствах может возникнуть потребность внесения какого-либо одного микроэлемента. Например, при внесении больших доз извести или на щелочных почвах бор и марганец переходят в недоступную для растений форму и проявляются признаки острой недостаточности этих элементов. На торфяных почвах как правило сильно ощущается недостаток меди.

Микроудобрения можно применять тремя способами.

Первый - внесение в почву. Обычно это делают весной до посева, так как при осеннем внесении значительная часть микроэлемента вымывается из корнеобитаемого слоя. Если внести микроэлементы весной, то большая их часть поглощается почвой и переходит в недоступное состояние, образуя резерв, из которого в течение двух-трех последующих лет пополняется фонд доступного элемента. Этот метод дает наилучший результат. Для больших площадей рекомендуется вносить микроэлементы в виде обогащенной ими формы суперфосфата. Это борсуперфосфат, молибденсуперфос фат и так далее (в скобках напомним, что обычный суперфосфат содержит немало кадмия и фтора). Эти удобрения можно вносить раз в несколько лет.

На небольших площадях садовых участков чаще применяют второй способ внесения микроудобрений путем внекорневой подкормки. Для этого используют более простые растворимые формы микроудобрений: борная кислота, молибдат аммония, сульфаты меди, цинка, кобальта и марганца. Обычная доза при опрыскивании листьев - о,о5%. Подкормку проводят в период бутонизации-нача ло цветения.

Третий способ - опрыскивание семян растворами микроэлементов в следующих концентрациях: борная кислота - 0,02%, сульфат марганца - 0,06%, сульфат цинка - 0,05%, сульфат меди - 0,2%, сульфат кобальта - 0,2%, молибдат аммония - 0,3% (по В.И.Панасину, 1986).

Для тех, кто применяет органические удобрения вряд ли может возникнуть необходимость в использовании микроудобрений, так как и навоз и компост достаточно богаты микроэлементами.

Еще один вид микроудобрений, еще не признанный нашей агрономической наукой, за рубежом уже находит признание и применение в органических хозяйствах. Это мука из горной породы. Если исходить из представления о том, что в корнеобитаемом слое постепенно исчерпывается запас доступных для разложения минералов, что называют деминерализацией почвы, то само собой разумеется, надо попытаться этот запас пополнить. Нет смысла выворачивать глубокой вспашкой на поверхность еще не тронутый разложением и богатый минералами нижний подстилающий слой. Такие идеи были, но их осуществление приводило к тому, что почва теряла свой самый драгоценный верхний плодородный слой. Гораздо проще внести минералы сверху. Это ведет к пополнению резервного фонда всех элементов минерального питания и в том числе микроэлементов.

Для этой цели годится мука из разных пород в том числе из базальта, диабаза, гнейса, порфирина, монтмориллонита. Очень важно добиться того, чтобы порода была измельчена очень тонко до состояния настоящей муки или пыли, только тогда она будет доступна для разложения микроорганизмами . Почву опыливают тонким слоем этой пыли, Точные дозы не называют, но расход приблизительно 40 г на 100 кв.м. Еще лучше смешать эту муку с компостом или навозом. Немецкие фермеры рассказывают настоящие чудеса о действии муки из горной породы. С ее помощью удалось восстановить в Германии умирающие леса, поврежденные кислыми дождями и загрязнением почвы тяжелыми металлами. Скот, который пасли на обработанных этой мукой пастбищах, отличался необыкновенным здоровьем и высокой продуктивностью. Такой же результат давало добавлением муки в корма. Наиболее пылкие энтузиасты добавляли эту муку в свою пищу по две чайные ложки в день и гордо рассказывали, как постепенно седина отступает, сменяясь естественным цветом волос. Все эти чудеса приписывают действию содержащихся в муке микроэлементов.

Чем больше ученые узнают строение компонентов биосферы, тем становится понятнее, что нет элементов просто "полезных" и "вредных". Для каждого из них есть определенный диапазон концентраций, за пределами которого полезный элемент превращается в вредное (ядовитый). Многое также зависит и от форм их нахождения в каждом конкретном случае, поэтому отнесение того или иного элемента в группу токсичных достаточно условно, которое отражает только высокую вероятность проявления его негативного воздействия на организм растений, животных и человека. Причины повышенного интереса к микроэлементам кроются в их огромном значении как в живом веществе планеты, так и в геологических процессах, происходящих в различных геосферах планеты (В. П. Кирилюк, 2006).

Недостаток или избыток химических элементов в горных породах, почвах, природных водах отражается на нормальном развитии биоценозов, вызывает эндемические заболевания растений, животных и человека. Заболевания, вызываемые токсическим действием веществ, попавших в организм очень малых количествах, известны с античных времен (например, меркуриализм - отравление ртутью, сатурнизм - отравление свинцом).

Все патологические процессы, вызванные дефицитом, избытком или дисбалансом микроэлементов в организме получили название микроэлементозов. В медицине появился даже новое направление - микроелементология , которая изучает сбалансированность обеспечения организма человека микроэлементами.

Значение микроэлементов для растений

Для выращивания высоких и устойчивых урожаев сельскохозяйственных культур наряду с биоэлементами (С, Η, О, N, Р, К, Са, Mg, S) важное значение в питании растений имеют еще около 18 элементов, прежде всего - в, Mn, Cu, Zn , Co, Mo. Поскольку содержание этих элементов в растениях и почвах достаточно мал (0,01-0,001% в пересчете на сухое вещество), их называют микроэлементами , а удобрения, которые содержат - микроудобрениями . Для выращивания высоких полноценных урожаев сельскохозяйственных культур необходимо учитывать их требования к микроэлементного состава питательной среды.

Выделяют несколько биологических групп растений, характеризующихся повышенной потребностью в тех или иных микроэлементах. Так, зерновые прежде всего реагируют на медь, бобовые - на молибден и бор, кукуруза - цинком, подсолнечник - на бор и медь, рапс - на бор и марганец (табл. 6.1).

Большинство микроэлементов необходимых для нормального роста и развития растений, поскольку они участвуют в таких важных процессах, как фотосинтез (Mn, Fe, Си), дыхания (Mn, Fe, Cu, Zn, Со), углеводный, жировой и белковый обмены, образование органических кислот и ферментов (Μη, V, Cu, Ni, Mo, Zn), процессы связывания свободного азота (Мо, В, Mn, Fe), превращения соединений азота и фосфора (В, Zn, Cu, Mn, Mo) , развитие клубеньковых бактерий (Cu, Mo, В), являются катализаторами различных реакций (Fe, Mn, Mo, Cu, Zn и др.). Известно, что А1, В, Cu, Со, Мо, Zn выполняют специфические функции в защитных механизмах морозостойких и засухоустойчивых видов растений.

Таблица 6.1. Биологическая потребность некоторых сельскохозяйственных культур в микроэлементах (обобщенные данные)

Культура

микроэлемент

Кукуруза

зернобобовые

масличные

капуста цветная

капуста белокочанная

Лук, чеснок

Помидор, перец

картофель

Арбуз, дыня

Земляника, малина

виноград

Яблоня, груша

Черешня, слива

газонные травы

декоративные

Примечание. Чувствительность: + - низкая; ++ - Средняя; +++ - Высокая.

Действие микроэлементов на физиологические процессы объясняется их содержанием ферментов, витаминов, гормонов и других биологически активных веществах. По оптимального обеспечения растений микроэлементами ускоряются их развитие и созревание семян, повышается устойчивость к болезням и вредителям, снижается действие против внешних неблагоприятных факторов - засухи, низких и высоких температур воздуха и почвы. В отличие от пестицидов микроэлементы повышают иммунитет растений.

Известно, что марганец, медь, цинк, бор и другие микроэлементы входят в состав противогрибковых и противобактериальных препаратов, поэтому удобрения, содержащие их, имеют снижать и заболеваемость сельскохозяйственных культур. Установлено, что на фоне применения микроудобрений пораженность овса головней уменьшается вдвое, пшеницы яровой - головней и мучнистой росой в 10 раз, ячменя головней и гельминтоспорозом - вдвое, пшеницы озимой септориозом, мучнистой росой и церкоспорозом - на 10%, подсолнечника мучнистой росой и белой гнилью - в 3-4 раза, кукурузы головней - на 60-80% (С. Ю. Булыгин и др., 2007).

Кроме того, они защищают растения от бактериальных и грибных болезней (табл. 6.2).

Таблица 6.2. Влияние микроэлементов на физиологическую устойчивость растений к болезням (В. Т. Куркаев, А. X. Шеуджен, 2000)

болезнь

микроэлемент

Бурая ржавчина зерновых

Корончатые ржавчина овса

Стеблевой ржавчины зерновых

Мучнистая роса зерновых

Бактериоз и ржавчина льна

ржавчина подсолнечника

фомоз свеклы

Ложная мучнистая роса свеклы

фитофтороз картофеля

Бурая пятнистость помидора

Белая пятнистость помидора

фитофтороз помидора

бактериоз капусты

Мучнистая роса капусты

Мучнистая роса крыжовника

Так, борьбе, молибденовые, медные и цинковые удобрения снижают вредоносность ржавчины, полиспорозу, антракнозу, кобальтовые и марганца удобрения эффективны в борьбе с мучнистой росой зерновых культур и фитофторозом помидора; предпосевная обработка семян гороха молибденом, цинком и кобальтом способствует снижению численности личинок клубеньковых долгоносика; марганец, медь и бор повышают устойчивость зерновых культур в Гессенской мухи.

Снижают повреждения гельминтоспориозом зерновых культур марганец, корнеедом свеклы - цинк, ризоктониозом картофеля - медь, марганец, фитофторозом картофеля - медь, молибден, марганец, черной ножкой картофеля - медь, марганец, грыжей капусты - марганец, бор, фомозом моркови - бор, черным раком яблони - бор, марганец, серой гнилью земляники - марганец.

Во всех случаях наибольшая эффективность микроэлементов в защите растений от патогенов проявляется при их применении на фоне оптимального питания микроэлементами.

Влияние микроудобрений на фитосанитарное состояние агроэкосистем возможен в нескольких направлениях: повышение физиологической устойчивости и адаптивности растений; снижение репродуктивной способности вредных организмов в растениях-хозяевах; задержание скорости передачи возбудителей в здоровые растения; изменение толщины кутикулы и эпидермиса, создает у растений защитный слой; изменение скорости роста и развития растений, нарушает взаимодействие возбудителя и растения в критические периоды формирования урожая.

В течение всего вегетационного периода растения нуждаются основных микроэлементов. Некоторые микроэлементы НЕ реутилизуються, то есть не передвигаются из старых органов в моложе.

Микроэлементы жизненно важные для растений и оказывают прямое воздействие на организм, их специфический биохимический влияние нельзя заменить другими веществами. Без них растение не может ни расти, ни завершить некоторые метаботични цикла. их недостаток обязательно должна быть компенсирована. Только тогда можно получить качественную продукцию, которая соответствует оптимальному содержанию для определенного сорта сахаров, аминокислот, витаминов.

Растения способны использовать микроэлементы только в водорастворимой (подвижной) форме), неподвижная форма микроэлемента может быть использована растениями после протекания сложных биохимических процессов с участием гуминовых кислот почвы. В большинстве случаев эти процессы происходят медленно и в условиях орошения значительная часть подвижных форм микроэлементов может вымываться. Все микроэлементы, кроме бора, входят в состав тех или иных ферментов, а бор локализуется в субстрате и участвует в перемещении сахаров через мембраны вследствие образования вуглеводно- боратного комплекса.

Большинство микроэлементов являются активными катализаторами, которые ускоряют целый ряд биохимических реакций. Совместное действие микроэлементов значительно усиливает их каталитическую действие. Во многих случаях только их сочетание может обеспечить нормальное развитие растений.

Однако сводить роль микроэлементов только к их каталитического действия неправильно. Они оказывают значительное влияние на образование биоколоидив, направленность биохимических процессов. Так, марганец регулирует соотношение двух- и трехвалентного железа в клетках. Соотношение железо: марганец должно быть> 2. Медь защищает от разрушения хлорофилл и позволяет повысить нормы азота и фосфора почти вдвое. Бор и марганец активируют процесс фотосинтеза после подмерзания растений. Неблагоприятное соотношение между азотом, фосфором и калием может привести к болезни растений, которые лечат с помощью микроудобрений.

Оптимальное питание растений микроэлементами повышает их устойчивость к неблагоприятным погодным условиям:

Медь, цинк, марганец, кобальт, молибден положительно влияют на засухоустойчивость растений, сохраняют более высокий уровень синтеза белка, повышают содержание аскорбиновой кислоты, пролина, амидов, нуклеиновых кислот, выполняют в растениях защитную функцию;

Бор, цинк и марганец обеспечивают устойчивость растений к резким колебаниям температур;

Бор и молибден снижают у растений транспирации днем и повышают ее утром, увеличивают содержание связанной воды и Водоудерживающая возможности тканей, уменьшают дневную депрессию фотосинтеза;

Цинк и медь повышают морозостойкость растений.

Многие ученые называют их "элементами жизни", отмечая, что в их отсутствие жизни растений и животных становится невозможным. Недостаток микроэлементов в почве не приводит к гибели растений, но является причиной нарушения обмена веществ, вызывает к заболеванию растений и животных. Основы применения микроэлементов в сельском хозяйстве должны основываться не только на потребностях в них той или иной культуры, но и в большей степени на их содержимом в почве, определяет их содержание в растениях, влияет на производительность и качество урожая. Поэтому основой для разработки мероприятий по производству и применению удобрений должно быть содержание подвижных форм микроэлементов в почвах, их географическая распространенность и распределение по почвенному профилю. В то же время микроэлементы как тяжелые металлы в концентрациях, превышающих потребности в них растений, могут нарушать биологические циклы, подавлять, а иногда и привести к гибели растений. Особенно токсичны для живых организмов высокие концентрации таких элементов, как Pb, Cd, Co, Cu, Zn, Ni. Поэтому, несмотря на высокую эффективность микроудобрений, допускать их бездумного применения нельзя, так как это может привести к накоплению в почве токсического количества тяжелых металлов. Избыток микроэлементов, как и их недостаток вызывают метаболические нарушения в растениях. В целом растение устойчива к повышенным, чем в пониженных концентраций микроэлементов. В процессе эволюции у растений выработались механизмы, регулирующие поступление и содержание в них химических элементов. Это не означает, что устанавливается постоянное содержание химических элементов в органах: наблюдаются колебания. Иногда значительные. Схему защитных реакций растений против чрезмерного поступления микроэлементов приведены на рис. 6.1.

Рис. 6.1.

Корни является главным аккумулятором микроэлементов, задерживает их проникновения в стебель. Основная их часть локализуется по периферии корней в зоне так называемого пояса Каспари. Вместе с этим защитные возможности корневой системы ограничены и при значительном поступления токсичных ионов из почвы она может полностью защитить вегетативную массу от загрязнения. Стебель содержит меньше токсичных элементов и ограничивает их поступления в генеративные органы, поэтому в семенные всегда меньше тяжелых металлов, чем в корнях или стеблях.

Особенно высокая степень адаптации то токсичных концентраций некоторых микроэлементов имеют более низкие растения - микроорганизмы, мхи, лишайники. Высшие растения менее устойчивы к повышенным концентрациям микроэлементов (табл. 6.3).

Таблица 6.3. Проявления токсичности микроэлементов в сельскохозяйственных культур (обобщенно В. П. Кирилюком, 2006)

элемент

симптом

чувствительная культура

Задержание роста, темно-зеленые или пурпурные окраска листьев, отмирание их кончиков, искажена корневая система

Хлороз краев и кончиков листьев, бурые пятнышки на листьях, загнивание точек роста, корневая гниль

Злаки, картофель, огурец, подсолнечник

Мижжилковий хлороз молодых листьев, белые края и кончики листьев, искаженные кончики корней

Темно-зеленые листья, угнетение образования побегов, толстые и короткие корни, состояние злаков

Злаковые, бобовые, шпинат

Некроз краев и концов листьев, хлоротичные и красно бурые пятнышки на листьях

Виноград, фруктовые

Темно-зеленую окраску листьев, замедленный рост надземных частей растений и корней

Хлороз и некротическое повреждение старых листьев, буровато-красные или красные некротические пятна, засохшие кончики листьев, чахлые корни

Злаки, бобовые, картофель, капуста

Жовкнення или покоричневению листьев, угнетение кущения и роста корней

Мижжилковий хлороз молодых листьев, серо-зеленые листья. Бурые чахлые корни, карликовость

Темно-зеленые листья. Скручивания старых листьев, бурые короткие корни

Мижжилковий хлороз или черные пятна, жовкнення молодых листьев, розовые пятна на корнях

Хлороз и некроз листьев, мижжилковий хлороз молодых листьев, задержание роста растений, повреждение корней, состояние злаков

Злаки, шпинат

Биодоступность микроэлементов, поступающих из воздуха сквозь листья (фолиарне поглощения), также может значительно влиять на загрязнение продукции растениеводства. Это имеет и практическое значение при проведении внекорневых подкормок, особенно такими элементами, как железо, марганец, цинк и медь. Микроэлементы, поглощенные листьями, могут переноситься в другие ограни, включая корни, где избыточное количество этих элементов может откладываться. Скорость перемещения микроэлементов во многом зависит от органа растения, его возраста и природы микроэлемента. Часть микроэлементов, захваченных листьями, может вымываться дождевой или поливной водой.

Впервые биологическую роль микроэлементов в жизни растений начал исследовать В. И. Вернадский. Большой вклад в решение теоретических и практических вопросов учения о микроэлементах сделали Е. В. Бобко, Я. В. Пейве, М. В. Каталымова, А. К. Кедров-Зихман, А. П. Винноградов, В. А. Ковда, Г. В. Добровольский,

А. 1. Перельман, М. Я. Школьник и др. Основоположником учения о микроэлементах и микроудобрения в Украине был П. А. Власюк, который рассматривал их как необходимые для жизни растений факторы окружающей среды. Он доказал специфику и многофункциональную роль отдельных микроэлементов, создал новые формы удобрений, разработал методы и способы их применения для повышения продуктивности сельскохозяйственных культур.

Выразительная признак недостатка микроэлементов в растениях - нарушение их нормального роста. Прежде всего это касается В, Mn, Cu, Zn, Мо и др.

Основным источником микроэлементов для растений является почва. их доступность определяют по наличию подвижных форм, меди, цинка, молибдена и кобальта составляют 5-15% валового содержания, для бора - 10-30% (табл. 6.4).

Таблица 6.4. Группировка почв по содержанию подвижных соединений микроэлементов, мг / кг (И. П. Яцук, С.А. Балюк, 2013)

группа

Цвет на картограмме

степень обеспеченности

микроэлемент

оранжевый

повышенный

очень высокий

Примечание. Экстракционный раствор: ацетатно-аммонийный с pH 4,8 (* 1); оксалатно-буферный с pH 3,3 (* 2) вода (* 3).

Группировка почв по способности обеспечивать растения одними и теми же микроэлементами, которые переходят в ацетатно-аммонийную и другие вытяжки, не совпадают. Это связано с разным количеством микроэлементов, которые вытесняются из почвы этими экстрагентами. Так, содержание подвижных соединений марганца в почвах, вытесненных ацетатно-аммонийным буферным раствором с pH 4,8, в среднем в 3-4 раза меньше, чем в вытяжке 0,1 н H2SO4; содержание цинка, наоборот, в ацетатно-аммонийной вытяжке в 2-4 раза больше, чем в 1 н растворе КС1; медь и кобальт буферным раствором экстрагируется мало, в среднем в 6-8 раз меньше, чем 1 н НС1 и 1 н HNO3.

Необходимо быть очень осторожным при оценке обеспеченности почв подвижными формами микроэлементов и разработки на их основе практических рекомендаций, так как их содержание значительно меняется в зависимости от времени взятия пробы. Эти колебания могут быть настолько значительными, что в разные сроки вегетационного периода один и тот же грунт может оказаться хорошо и слабо обеспеченным подвижными формами микроэлементов.

По сравнению с макроэлементами содержимое микроэлементов в почвах невысок. Поэтому все почвы способны полностью удовлетворить потребности растений в микроэлементах. Основной причиной дефицита микроэлементов в первую очередь является их слабая доступность для растений. Большинство почв Полесья хорошо обеспечены марганца и удовлетворительно медью, но они мало содержат бора, молибдена, цинка. Почвы Лесостепи богатые марганец, достаточно обеспечены медью, удовлетворительно молибденом, слабо - бором и цинком.

Закономерности распределения микроэлементов в почвах Украины обусловлены широкими природными свойствами самих элементов, минералого-геохимическими особенностями грунтотворних пород, физико-химическими характеристиками почв, ландшафтными и техногенными условиями. В грунтотворних глинистых породах с высоким содержанием коллоидных фракций и преобразованием минералов монтморилонитового типа содержится максимальное количество элементов, меньше всего их в флювиогляциальных, песчаных и супесчаных отложениях. Бедные на химические элементы зональные почвы Полесья, а максимальный содержимое валовых и подвижных форм характерен для почв степной зоны.

На основе информации о содержании и распределение микроэлементов в почвах Украины можно проводить биохимическое районирования той или иной территории, определить эффективность применения микроудобрений, подкармливать животных, а также прогнозировать природно-очаговые и, возможно, эндемичные заболевания животных и человека.

Всего в большинстве почв Украины обычно не фиксируется ни недостатка, ни избытка микроэлементов. Это объясняется спецификой грунтотворних пород, которую унаследовали и почвы. При относительной благополучия, свойственной черноземам, сельскохозяйственные культуры положительно реагируют на дополнительное внесение бора, марганца, меди, молибдена и цинка. Можно считать, что речь идет о стимулирующее действие, а не о недостатке микроэлементов.